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Abstract— Several methods have been developed for determin-
ing fixed priority configurations on uniprocessor. In this paper,
we present a new method, calledPFX, for determining fixed
priority configurations on multiprocessor. PFX follows an off-
line approach: our constructive process uses an inductive analysis
of the whole set of possibilities. Therefore,PFX provides all valid
fixed priority configurations. Experimentations (section V) show
that PFX is very efficient on multiprocessor and subsumes Rate
Monotonic (RM), Deadline Monotonic (DM) as well as Earliest
Deadline First (EDF). In addition, we have found task systems
which can be scheduled byPFX, but can not be scheduled by
RM, DM, EDF or Least Laxity First (LLF).

Index Terms— Real-Time, Fixed priority scheduling, Multipro-
cessor, Asynchronous periodic tasks, Hard deadlines

I. I NTRODUCTION

The scheduling of real-time systems relies upon the use of op-
erating systems (for example VxWorks). Usually, these operating
systems use fixed priority scheduling: the priorities are attributed
to the tasks at the start and remain fixed. Priorities are generally
attributed as follows: either the designer decides the priorities
according to the needs of the system and to his experience, orhe
uses a fixed priority policy which determines the priority ofeach
task.

Many policies have been proposed for uniprocessor scheduling:
for example Rate Monotonic (RM) and Earliest Deadline First
(EDF) [15], Deadline Monotonic (DM) [14] and Least Laxity
First (LLF) [12]. EDF and LLF are optimal on uniprocessor, DM
is optimal on uniprocessor when the tasks start simultaneously
and RM is optimal on uniprocessor for synchronous task systems
with implicit deadline. Necessary and sufficient conditions have
been proved for a policy to produce reliable scheduling of a task
system for RM [13] and for EDF [15]. The reader interested in
real-time scheduling surveys can read [4][16].

[12] shows that no scheduling policy is optimal on multi-
processor. In this context, we observe the following qualitative
results. RM and DM are low level performing and then must be
used with care. Observing our experimentation results showthat
EDF is also a low level performance policy. By the way, LLF
is not an event-driven policy and its implementation is therefore
not realistic. [6] proposes a new algorithm called PFair whose
optimality has been proved for synchronous task systems with
implicit deadline. PFair has the same drawback as LLF.

Another strategy to solve the scheduling problem for a task
system consists in finding fixed priority configurations which
make it feasible. [3] proposes such an approach for uniprocessor.

This method is optimal, and it is useful to find fixed priority
configurations different from RM or DM priorities. [1] proves
that this method is not optimal for the multiprocessor context, but
[7] uses it to produce multiprocessor fixed priority configurations
which are different from RM priorities.

In this paper we present an off-line method we callPFX which
generates recursively (with respect to the length of execution
sequences) all valid fixed priority configurations. We limitthe
complexity level of the process by using a basis concept which
merges all priority configurations which generate sequences with
identical prefixes. The time complexity ofPFX depends on the
number of solutions, not on the size of the task system. Our
experimentations confirm this result, since the computation time
decreases when the load of the task systems increases.

Our method produces all valid fixed priority configurations.
It is therefore optimal for attributing fixed priorities in the
multiprocessor context. The knowledge of all valid configurations
makes the designer able to select the best one according to specific
criteria: response time, jitter, etc. Following the same technique
that [7], we have foundPFX-schedulable task systems which
can not be scheduled using RM or DM (and also, sometimes,
using EDF or LLF): we are able to produce a valid fixed priority
configuration for these systems using our technique.PFX deals
with the following context: multiprocessor, asynchronoussystems,
hard deadline. It produces solutions which are not reached using
others scheduling techniques.

This paper is organized as follows: Section II presents the
software and hardware context we deal with. Then, Section III
gives the principles of our approach, and Section IV provides
practical implementation aspects. The experimentation section
concludes the paper: we compare the scheduling power of our
method with classical approaches (RM, DM, EDF, LLF) and with
the methods proposed in [5] and [2]. Results are surprising!

II. CONTEXT

A. Software context

We consider real-time systems composed of a (static) finite
number of independent periodic tasks. The current task system is
denoted byΞ in the following.

Each taskτi ∈ Ξ is a program designed to react to a specific
eventei. Each occurrenceei,j of ei is associated with its occuring-
time ti,j. The software reaction toei,j consists in creating a job
τi,j based on taskτi – i.e. runningτi’s code – that is activated
at timeti,j . If we get∃Ti ∈ N

∗ such that∀j ∈ N, ti,j = ri + jTi,
the taskτi is calledperiodic, andTi is calledperiod of τi. If not,
τi is calledaperiodic. In this paper, we deal with periodic tasks.



Each taskτi is characterized by the following time attributes:

• ri is the first release time, i.e. the timeti,0 associated with
the first occurrence ofei,

• Ci is the worst case execution time (WCET),
• Di is the relative deadline, i.e. the time delay between the

release time and the deadline of each job ofτi,
• Ti is the period.

We consider that all temporal parameters are natural numbers.
All jobs of τi share the attributesCi and Di. The release time
of the job τi,j is ri,j = ri + jTi, and its absolute deadline is
di,j = ri,j + Di. A task can not be parallelized, soCi ≤ Di. In
addition, we assume that tasks are not reentrent:Di ≤ Ti.

B. Hardware context

Real-time applications can be hosted on various hardware
systems. Three different contexts are typical: uniprocessor, multi-
processor and distributed architectures. In the distributed context,
processors are not directly interconnected: communications stand
on a network. So delays induced by networking have to be con-
sidered as scheduling constraints. Such parameters used tobe not
deterministic, because they depend on the networking behaviours.
On the opposite, the multiprocessor context corresponds tothe
use of memory sharing (PRAM model): process communication
is completed inO(1) time.

Two different approaches (partitioned and global) have been
developed for the study of multiprocessor architectures. In the
partitioned approach, tasks are attributed beforehand to each
processor. So the multiple instance problem is equivalent to a
uniprocessor scheduling problem. Nevertheless, the static attribu-
tion of tasks on processors is NP-hard [8]. Conversely, the global
approach allows the different jobs of the same task to be executed
on different processors. Under the total migration assumption,
dynamic processor changes are possible for the same job. [8]
gives a classification of the different multiprocessor scheduling
problems.

In this paper we deal with multiprocessor architectures viathe
global approach. We assume that the global migration assumption
is fulfilled: jobs can migrate at any time. In addition, tasksare
supposed to be preemptive: a task can be suspended during
execution in order to allow the treatment of a higher priority one.
In the following, p is the number of processors of the currently
used target.

C. Scheduling Sequences

A scheduling sequence models the execution of a task system.
At every time, a scheduling sequence collects the set of running
tasks, i.e. tasks which own a processor. This section presents some
definitions concerning this concept.

Time is modeled by the setR
+: 0 corresponds to theinit of the

real-time software we are concerned with. We assume that if no
event occurs on a time interval[t1, t2[, then there are no changes
in the set of running tasks betweent1 and t2. We also assume
that there exists a delayu ∈ R

+ such that if two consecutive
eventse1 and e2 occur at timest1 and t2, then t2 − t1 ∈ uN. u

is the minimal observation capacity of our system. For instance,
it may be the duration of any atomic statement on the considered
target architecture. We consider thatu is our time unit, i.e. that
u = 1. Then, observing the evolution of the system at timet ∈ N

is equivalent to observing it at any time in[t, t + 1[.

This is why we consider discrete time: the integert corresponds
to the time interval[t, t + 1[. For simplicity, we denote byNt the
set [0, t] ∩ N, and byN

⋆
t the set[1, t] ∩ N.

Definition 1: A scheduling sequence(st)t∈N
is a sequence of

subsets ofΞ. For every timet ∈ N, the setst collects all tasks
running at timet.

We denote bySΞ the set of scheduling sequences ofΞ.
Example 1:Consider the following task system, called

cnf one:
Task ri Ci Di Ti

τ1 0 1 3 3
τ2 0 2 6 6
τ3 0 1 4 4

One possible2-processor scheduling sequence for this example
is the permanent iteration of the sequence presented in Figure 1.

τ1 ↑ l l l
τ2 ↑ l l
τ3 ↑ l l l l

Fig. 1. Scheduling sequence forcnf one

A taskτi ∈ Ξ is active if its current job is not yet completed, so
some statements are pending. Active tasks can be defined thanks
to the total CPU-owning time of their successive jobs.

Definition 2: Let s ∈ SΞ be a scheduling sequence andt ∈ N.
For any jobτi,j , we get:

Ci,j (s, t) =
u=t−1

Σ
u=ri,j

|su ∩ {τi}|

Remark that fort ≤ ri,j, we getCi,j (s, t) = 0.
We can now define the notion of active task.
Definition 3: Let s ∈ SΞ be a scheduling sequence andt ∈ N.

The taskτi ∈ Ξ is active at timet ∈ N if and only if:

t ≥ ri andC
i,

j

t−ri
Ti

k (s, t) < Ci

We denote bysa
t the set of active tasks at timet in the

scheduling sequences.
Example 2:Gantt’s chart presented in Figure 1 gives the tasks

running at every time. Table I completes this chart with the set of
active tasks and the value of the total CPU-owning time acquired
by each task.

t sa
t st C

i,

j

t−ri
Ti

k (s, t)

τ1 τ2 τ3
(i = 1) (i = 2) (i = 3)

0 {τ1, τ2, τ3} {τ2, τ3} 0 0 0
1 {τ1, τ2} {τ1} 0 1 1
2 {τ2} ∅ 1 1 1
3 {τ1, τ2} {τ1, τ2} 0 1 1
4 {τ3} {τ3} 1 2 0
5 ∅ ∅ 1 2 1
6 {τ1, τ2} {τ1, τ2} 0 0 1
7 {τ2} ∅ 1 1 1
8 {τ2, τ3} {τ2, τ3} 1 1 0
9 {τ1} {τ1} 0 2 1
10 ∅ ∅ 1 2 1
11 ∅ ∅ 1 2 1

TABLE I

CHARACTERISTICS OF THE SCHEDULING SEQUENCEs DEFINED IN FIGURE

1

A specific scheduling is planned to be executed on a specific
architecture. Its feasibility involves its ability to satisfy some
constraints depending on the architecture. In this work, wedeal



with PRAM architectures, so the only characteristic we mustdeal
with is the limitation of the number of processors. Rememberthat
p denotes the number of available processors.

A scheduling sequence iscompatible with a p processor
architecture if it never plans to execute more thanp tasks
simultaneously. Moreover, a scheduling generated for a real-time
operating system is work-conserving: no processor can be idle
when there are pending tasks. In the following, we are interested
in this kind of scheduling. The next definition formalizes all these
notions.

Definition 4: Let s ∈ SΞ.

• s is p-compatible if and only if∀t ∈ N, |st| ≤ p.
• s is p-conservative if and only if∀t ∈ N, |st| = min {p, |sa

t |}.
• Let t ∈ N, s is (p, t)-conservative if and only if:

∀u < t, |su| = min
˘

p,
˛

˛s
a
u

˛

˛

¯

We denote bySp
Ξ the set ofp-compatible scheduling sequences

of Ξ.

D. Fixed Priority Configurations

A scheduling algorithm keeps the set of active tasks sorted
following a specific criterion, calledpriority. Priorities are imple-
mented as numeric values, then sorting tasks stands on the natural
order onR.

Priorities can bestatic or dynamic. When they are static, the
value associated with each taskτi is defined before starting the
execution, and can not be modified while the software runs. Then
all jobs τi,j concerning taskτi are associated with the same
priority. Moreover,τi andτj are associated with different values.
This strategy is calledfixed priority configurations. So a fixed
priority configuration corresponds to a total order on the task set.

RM andDM are calledfixed priority policies. However, they
do not satisfy all properties of fixed priority configurations: RM

and DM can assign the same priority to two different tasks
(e.g. when periods are equal), therefore they do not involvea
total order. This is why a second criterion is usually associated
with these policies, to make the scheduling process deterministic:
for instance numbers of tasks can be used. Hence, a fixed
priority policy can be associated with an equivalent fixed priority
configuration, but it is not true in general.

This is why one must distinguish fixed prioritypolicies from
fixed priorityconfigurations: configurations reach all fixed priority
schedulings, but policies may not. In this work, we focus on
computing configurations, and we do not deal with looking for
policies corresponding to specific configurations. In that follows,
we present the basic notions on fixed priority configurations.

Definition 5: A fixed priority configuration onΞ is a bijection
A : Ξ → N

⋆
|Ξ|.

We denote byCΞ the set of fixed priority configurations onΞ.
Example 3:For the task systemcnf one, the RM policy

associates13 with τ1, 1
6 with τ2 and 1

4 with τ3. This is equivalent
to τ1 ↔ 3, τ2 ↔ 1 and τ3 ↔ 2. For this task system, we
can useRM or DM priorities, or any other equivalent priority
configuration:

RM DM Other. . .
τ1 ↔ 3 τ1 ↔ 3 τ1 ↔ 3

τ2 ↔ 1 τ2 ↔ 1 τ2 ↔ 2

τ3 ↔ 2 τ3 ↔ 2 τ3 ↔ 1
Each fixed priority configuration leads the scheduling algorithm

to produce a specific scheduling sequence, but these sequences

are identical as soon as the priorities assigned to two different
tasks are never compared by the scheduler (for example, when
two tasks can never be active simultaneously).

To produce the sequence corresponding to a specific config-
uration, the scheduling algorithm chooses at each time thep

higher priority tasks among the set of active tasks. The following
definition shows how scheduling sequences are associated with
fixed priority configurations.

Definition 6: Let A ∈ CΞ be a fixed priority configuration on
Ξ. The scheduling sequence onΞ generated byA on ap processor
architecture is defined as follows:

∀t ∈ N,

s (A, p)t =
˘

τi ∈ s (A, p)at such that
˛

˛Ei ∩ s (A, p)at
˛

˛ < p
¯

whereEi is the set

Ei =
˘

τj ∈ Ξ such thatA
`

τj

´

> A (τi)
¯

Note that a sequences (A,p) generated thanks to a fixed
priority configurationA ∈ CΞ is alwaysp-conservative.

III. F IXED PRIORITY SCHEDULING

Scheduling tasks using classical policies (RM , DM , etc.) is
useful, because these policies are implemented into real-time
operating systems. They are optimal for the uniprocessor context.
Unfortunately, the optimality results are no longer valid in the
multiprocessor context, and these policies are significantly less
efficient. Searching alternative fixed priority configurations may
lead to limit this loss of performance, and can produce solutions
compatible with existing operating systems.

In this section, we characterize the sequences which can be
generated thanks to a fixed priority scheduling algorithm, and we
show how the corresponding fixed priority configuration can be
produced.

A. Priority Relations

A fixed priority configuration which generates a scheduling
sequences can be computed if and only if a configurationA ∈ CΞ

which satisfiess = s (A, p) exists. SearchingA leads to search
a binary transitive relation onΞ. In this section, we characterise
the binary relation according to a specific scheduling.

Choosing τi when both τj and τk are also active involves
that the priority level ofτi is maximal in the set

˘

τi, τj , τk

¯

.
Observing these properties while following a sequences can
lead to a fixed priority configuration compatible withs. This
computing process stands on the notion of priority relation.

Definition 7: Let A ⊂ Ξ be a set of active tasks andB ⊂ A

its subset of running tasks. We call priority relation induced by
the setsA andB every couple which belongs to the setRPA (B)

defined in the following way:

RPA (B) =
˘`

τi, τj

´

|τi ∈ B andτj ∈ A \ B
¯

The following definition gives the induced priority relations at
time t for a given execution sequence.

Definition 8: Let s ∈ SΞ and t ∈ N. We call (s, t)-induced
priority relations onΞ the set defined as follows:

RPt (s) = RPsa
t

(st)

Example 4:For the scheduling sequence of the task system
cnf one (see Example 1), we get the following(s, t)-induced
priority relation sequence on the time intervalN11:



t RPt (s) t RPt (s)

0 {(τ2, τ1) , (τ3, τ1)} 6 ∅

1 {(τ1, τ2)} 7 ∅

2 ∅ 8 ∅

3 ∅ 9 ∅

4 ∅ 10 ∅

5 ∅ 11 ∅
As far as we consider fixed priority context, belonging to a

specificRPt (s) leads a condition to stand for everyu > t, i.e.
for the whole life of the software. This is why we define the
priority relations induced by a sequence as follows (recallthat
the transitive closure of a binary relationR is denoted byR).

Definition 9: Let s ∈ SΞ. We call s-induced priority relations
on Ξ the set:

RP (s) = ∪
t∈N

RPt (s)

Example 5:For the scheduling sequences presented in Figure
1, we get the followings-induced priority relations (see the table
of RPt (s)’s on Example 4):

RP (s) = {(τ1, τ2) , (τ2, τ1) , (τ3, τ1) , (τ3, τ2)}

τ1 ↑ l l l
τ2 ↑ l l
τ3 ↑ l l l l

Fig. 2. Scheduling sequence forcnf one

Let us now consider the uniprocessor scheduling sequences′

concerningcnf one and presented in Figure 2. Thes-induced
priority relation computing leads us to

RP
`

s
′´ = {(τ3, τ1) , (τ3, τ2) , (τ1, τ2)}

Note thats and s′ induce different priority relations.s′ can
be generated thanks to fixed priorities as soon as task priorities
satisfy RP

`

s′
´

. The configurationτ1 ↔ 2, τ2 ↔ 1 and τ3 ↔ 3

is a possible solution. On the opposite,s can not be generated
in this way, because a valid fixed priority configuration should
satisfy all relations inRP (s). This is not possible, because all
tasks should share the same priority level, that is incompatible
with fixed priority scheduling.

Therefore, no fixed priority scheduling can generate a schedul-
ing sequences as soon asRP (s) contains a cycle.

B. Fixed Priority Relations

In this section, we present a necessary and sufficient condition
for a sequences to be produced from a fixed priority policy. We
first extend the notationRP to fixed priority configurations.

Definition 10: Let A ∈ CΞ. We call set of priority relations
induced byA the set

RP (A) =
n

`

τi, τj

´

∈ Ξ2 such thatA (τi) > A
`

τj

´

o

By construction,RP (A) does not contain cycles.
Lemma 1:Let A ∈ CΞ. We getRP (s (A, p)) ⊂ RP (A).

Proof
Let t ∈ N and

`

τi, τj

´

∈ RPt (s (A, p)). The definition of
RPt (s) leads toτi ∈ s (A, p)t and τj ∈ s (A, p)at \ s (A, p)t.
The definition ofs (A, p) leads toA (τi) > A

`

τj

´

, and then to
`

τi, τj

´

∈ RP (A).
QED

Theorem 1:Let s ∈ SΞ, and A ∈ CΞ such thats (A, p) = s.
Thens is p-conservative andRP (s) does not contain cycles.
Proof

Let A be a fixed priority configuration such thats (A, p) = s.
Using Lemma 1, we getRP (s) = RP (s (A,p)) ⊂ RP (A). Since
RP (A) does not contain cycles, this property stands also for
RP (s). Moreover,s (A, p) is p-conservative, hence the property
also stands fors.
QED

Lemma 2:Let A ∈ CΞ and s ∈ SΞ be a p-conservative
sequence such thatRP (s) ⊂ RP (A). For t ∈ N, we get:

s
a
t = s (A,p)at ⇒ st = s (A, p)t

Proof
Let t ∈ N such thatsa

t = s (A, p)at . Sinces is a p-conservative
sequence,s (A,p)t = s (A, p)at leads tost = sa

t , and then to
st = s (A,p)t.

Let us now suppose thats (A, p)t 6= s (A, p)at . Then there are
two tasksτi and τj such that



τi ∈ s (A,p)t
τj ∈ s (A, p)at \ s (A, p)t

By definition of s (A, p), every couple
`

τi, τj

´

which satisfies
this property satisfies alsoA (τi) > A

`

τj

´

. By definition of
RP (A), we get

`

τi, τj

´

∈ RP (A). We know thatRP (A) does
not contain cycles, and the lemma assumesRP (s) ⊂ RP (A).
Then

`

τj , τi

´

can not belong toRP (s). Consequently,τj 6∈ st or
τi 6∈ sa

t \ st. Thus we get the following possible cases:

1)
˘

τi, τj

¯

⊂ st

2)
˘

τi, τj

¯

⊂ sa
t \ st

3) τi ∈ st andτj ∈ sa
t \ st

Case 1
Since s and s (A, p) are bothp-conservative and sincesa

t =

s (A, p)at , we get |st| =
˛

˛s (A, p)t
˛

˛. Case 1) is characterised by
the properties

˘

τi, τj

¯

⊂ st, τi ∈ s (A, p)t and τj ∈ s (A, p)at \
s (A, p)t. Then there existsτk which satisfies the properties
τk ∈ s (A, p)t and τk 6∈ st. The existence of such a task leads
to

`

τk, τj

´

∈ RP (A) and
`

τj , τk

´

∈ RP (s), that is incompatible
with the hypothesis



RP (s) ⊂ RP (A)

RP (A) does not contain cycles

This is a contradiction: Case 1) is impossible.
Case 2

The proof is similar to that of Case 1): we obtain a taskτk

which satisfiesτk ∈ st and τk 6∈ s (A, p)t. These properties
lead to (τk, τi) ∈ RP (s) and (τi, τk) ∈ RP (A). We obtain a
contradiction.
Case 3

This case leads tost = s (A, p)t. Since both other cases cannot
yield, Case3 gives the only possible conclusion.
QED

Theorem 2:Let s ∈ SΞ be a p-conservative sequence such
that RP (s) does not contain cycles. There exists a configuration
A ∈ CΞ which satisfiess (A, p) = s. MoreoverA is unique as
soon asRP (s) is a total relation.
Proof

RP (s) does not contain cycle. Then it can be extended into a
total and cycle-free relationR. SinceRP (s) ⊂ R, there exists a
fixed priority configurationA such thatRP (A) = R.



To reach the result of Theorem 2, we proceed by induction on
t to prove the property

∀k ∈ N
⋆
|Ξ|,∀ (i, t) ∈ N

2
, Ck,i,t (s) = Ck,i,t (s (A, p))

For t = 0, this property yields.
Let us suppose that it stands fort ∈ N. By definition ofA, we

get sa
t+1 = s (A, p)at+1. Moreover, Lemma 2 proves thatst+1 =

s (A, p)t+1. Then, we get

∀k ∈ N
⋆
|Ξ|,∀i ∈ N, Ck,i,t+1 (s) = Ck,i,t+1 (s (A, p))

Hence this property stands fort ∈ N. Consequently, the
following property also stands:

∀t ∈ N, s
a
t = s (A, p)at

Then Lemma 2 gives∀t ∈ N, st = s (A, p)t.
If A is a priority configuration which generatess, we get

RP (s) ⊂ RP (A). If RP (s) is a total relation, we getRP (s) =

RP (A), henceA is unique.
QED
These properties are useful to characterize the set of relations that
are compatible with a fixed priority policy.

Definition 11:
1) Every binary transitive relation onΞ is called a priority

relation on Ξ. We denote byBTRΞ the set of these
relations.

2) Every binary transitive and acyclic relation onΞ is called a
fixed priority relation onΞ. We denote byBTAR (Ξ) the
set of these relations.

C. Consistency

Theorems 1 and 2 give a necessary and sufficient condition to
decide if a specific scheduling sequence can be generated on-line
from a specific fixed priority configuration.

The scope of this section is to extend this result to priority
relations, i.e. to give a necessary and sufficient conditionuseful
to decide if a specific priority relation is compatible with aspecific
scheduling sequence. We call this propertyconsistency.

A total relation corresponds to a priority configuration which
generates a unique scheduling sequence. On the opposite, when
it is not total, nothing can be deduced in terms of compatibility
with priority driven on-line scheduling generation.

Example 6:Consider the following task system:
ri Ci Di Ti A (τi)

τ1 0 1 4 4 3
τ2 0 2 6 6 1
τ3 0 1 3 3 2

We consider a specific priority configurationA which associ-
ates the priorityA (τi) with taskτi. Figure 3 presents the very first
steps of the corresponding scheduling sequence. One can remark
that scheduler decisions are deterministic (one possible choice
at each switch time). Definition 10 gives the relationRP (A)

associated withA:

RP (A) = {(τ1, τ2) , (τ1, τ3) , (τ3, τ2)}

This relation leads the scheduling algorithm to produce thesame
sequence asA.

Now, consider the relationR = {(τ1, τ2) , (τ1, τ3)}. Figure
4 presents the very first steps of the corresponding scheduling
sequence. At time0, R associates the highest priority withτ1,

τ1 ↑ l
τ2 ↑ l
τ3 ↑ l

s∗0 = {τ1, τ2, τ3} s∗1 = {τ2, τ3} . . .
↓ ↓ . . .

A (τ1) > max (A (τ2) , A (τ3)) A (τ3) > A (τ2)

↓ ↓ . . .
s0 = {τ1} s1 = {τ3} . . .

Fig. 3. Generating a scheduling sequence from a priority relation computed
from a fixed priority configuration

thenτ1 runs. At time1, τ1 is completed, then it is no more trying
to access a processor. Consequently, the scheduler has to choose
betweenτ2 andτ3. Unfortunately,R gives no information about
the couple(τ2, τ3). Therefore, the scheduler can choose any of
these tasks:R does not lead to a deterministic scheduler.

τ1 ↑ l
τ2 ↑ l
τ3 ↑ l

s∗0 = {τ1, τ2, τ3} s∗1 = {τ2, τ3} . . .
↓ ↓

(τ1, τ2) ∈ R

(τ1, τ3) ∈ R

(τ2, τ3) 6∈ R

(τ3, τ2) 6∈ R
. . .

↓ ↓ . . .
s0 = {τ1} s1 =? . . .

↓ ↓ . . .
R is (1, 1)-consistent R is not (2, 1)-consistent

Fig. 4. A scheduling sequence generated from a priority relation

Definition 12: Let R ∈ BTAR (Ξ) and t ∈ N. R is (t, p)-
consistent if and only if there exists a(p, t)-conservative sequence
s ∈ SΞ such that ∪

u∈Nt−1

RPu (s) ⊂ R.

A sequences which satisfies the(p, t)-consistence property for
R is called compatible withR.

We denote byBTARt,p (Ξ) the set of(t, p)-consistent rela-
tions.

The useful properties of(t, p)-consistent relations are presented
in the following lemmas. One can remark that the Lemma 2 leads
RP (A) to be(t, p)-consistent for allt ∈ N and allp ∈ N as soon
as the configurationA concerns fixed priorities.

Lemma 3:Let t ∈ N, R ∈ BTARt,p (Ξ), and s ∈ SΞ and
s′ ∈ SΞ two R-compatible scheduling sequences. We getu ∈
Nt−1 ⇒ su = s′u.
Proof

SinceR is a(t, p)-consistent relation, it does not contain cycles.
Thus, there exists a fixed priority configurationA such thatR ⊂

RP (A). Moreover, the lemma assumes
t′=t−1

∪
t′=0

RPt′ (s) ⊂ R ⊂

RP (A). Then we deal with the hypothesis of the Lemma 2, who
requiresRP (s) ⊂ RP (A). Therefore, the Lemma 2 stands on



Nt−1, and then we get

∀t
′
< t, s

a
t′ = s (A,p)at′ ⇒ st′ = s (A, p)t′

Using this property in the same way as in the proof of the
Theorem 2, we obtain

∀t
′
< t, st′ = s (A, p)t′

Following the similar way fors′, we get

∀t
′
< t, s

′
t′ = s (A, p)t′ = st′

QED
Therefore, all scheduling sequences compatible with a(t, p)-

consistent relation share the same scheduling choices fromtime
0 to time t. This common subsequence is denoteds (R,p, t). To
satisfy the definition of scheduling sequences (see Definition 1),
s (R, p, t) must be precised for allt′ ∈ N, hences (R,p, t)t′ must
be defined fort′ ≥ t. This is why we use the following extension:

∀t
′ ≥ t, s (R,p, t)t′ = ∅

Lemma 3 shows that consistency leads the sequence produced
by the scheduler to be unique, and then the scheduler to be
deterministic. The following lemma proves the monotonicity of
consistency onBTAR (Ξ).

Lemma 4:Let t ∈ N, R ∈ BTARt,p (Ξ) andR′ ∈ BTAR (Ξ).
If R ⊂ R′, thenR′ is (t, p)-consistent ands (R,p, t) = s

`

R′, p, t
´

.
Proof

By definition,s (R,p, t) is compatible withR′. ThereforeR′ is
(t, p)-consistent. By definitions

`

R′, p, t
´

is also compatible with
R′. It follows that s (R, p, t) and s

`

R′, p, t
´

are compatible with
R′ and the Lemma 3 involves

∀t
′
< t, s (R, p, t)t′ = s

`

R
′
, p, t

´

t′

By definition we get also

∀t
′ ≥ t, s (R, p, t)t′ = s

`

R
′
, p, t

´

t′
= ∅

QED

D. Basis for Consistent Relations

Searching valid fixed priority configurations leads to test all
possible configurations (there are|Ξ|! configurations to test). As
soon as|Ξ| is large, the enumerative approach can not be used
anymore. In this section, we define a new concept, useful to limit
the complexity of the testing process: the notion of basis of(t, p)-
consistent relations (see Figure 5). These bases will allowus to
determine the valid fixed priority configurations by avoiding the
complete enumeration of configurations.

Definition 13: Let t ∈ N and E ⊂ BTARt,p (Ξ). E is a
basis ofBTARt,p (Ξ) if and only if for everys ∈ SΞ which is
compatible with a priority relation ofBTARt,p (Ξ), there exists
a uniqueR ∈ E such that∀t′ < t, s (R, p, t)t′ = st′ .

Generating a basis is useful to avoid redundancy: the number
of relations inE is the number of valid sequences of lengtht

which can be generated from a fixed priority configuration.
There are several bases ofBTARt,p (Ξ). This property can be

observed ift = 0. There is only one sequences of length0, so all
bases ofBTAR0,p (Ξ) contain exactly one element. Moreover,
all fixed priority configurations generate the same sequenceof
length 0, and then each fixed priority configuration is a basis of

SequencesRelations

x

x

x

x

xx

x

x

x

Basis

x

Generation
Every sequence is reached from the basis

Minimality
Avoiding one may lead a reached sequence to be lost
Avoiding one lets the set of reached sequences unchanged

Fig. 5. Characteristics of a basis of relations

BTAR0,p (Ξ). Lemma 4 leads to a special basis composed of
minimal relations in the sense of inclusion.

Definition 14: Let t ∈ N and R ∈ BTARt,p (Ξ). R is a
minimal relation if and only ifR = RP (s (R, p, t)).

We denote by Bt,p (Ξ) the set of minimal relations of
BTARt,p (Ξ).

This definition means that a minimal relationR is optimal for
the generation of the sequences (R,p, t). The following theorem
proves thatBt,p (Ξ) is a basis ofBTARt,p (Ξ).

Theorem 3:Let R ∈ BTRΞ and t ∈ N. The two following
assertions are equivalent:

• R is (t, p)-consistent
• ∃!R′ ∈ Bt,p (Ξ) such thatR′ ⊂ R

Proof
Suppose that there existsR′ ∈ Bt,p (Ξ) such thatR′ ⊂ R. By

definition, R′ is (t, p)-consistent, and Lemma 4 proves thatR is
also(t, p)-consistent, becauseR′ ⊂ R.

Since R is (t, p)-consistent, we getRP (s (R, p, t)) ⊂ R.
Moreover, this set is(t, p)-consistent and minimal. Then we get
RP (s (R, p, t)) ∈ Bt,p (Ξ). So, we getRP (s (R, p, t)) ∈ Bt,p (Ξ)

andRP (s (R,p, t)) ⊂ R.
Let R′ ∈ Bt,p (Ξ) such thatR′ ⊂ R. Lemma 4 proves

that s
`

R′, p, t
´

= s (R, p, t), and we get (Definition 14)R′ =

RP
`

s
`

R′, p, t
´´

. Therefore, we haveR′ = RP (s (R, p, t)).
Hence for each minimal relation such thatR′ ⊂ R, we get

R′ = RP (s (R,p, t)). Therefore, there exists a unique relation in
Bt,p (Ξ) such thatR′ ⊂ R.
QED

So the setBt,p (Ξ) is a basis ofBTARt,p (Ξ).
Definition 15: The setBt,p (Ξ) is called the minimal basis of

BTARt,p (Ξ).
The Theorem 3 shows that the minimal basis is useful to decide

if a relationR is (t, p)-consistent: this property is reached as soon
asR contains one relation of the basis, it is not necessary to go
back to the corresponding scheduling. Note that the minimalbasis
is the sole basis that satisfies the Theorem 3.

E. Q-Validity

Previous sections provide results to decide if a specific schedul-
ing sequence can be generated according to fixed priority rules. If
this decision is positive, we know how to generate a fixed priority
relation compatible with all fixed priority configurations useful to
generate the sequence.



We are now interested in integrating usual specific real-time
constraints into this methodology: deadlines, resource sharing, etc.
This is the aim of this section: constraints are modeled by logical
conditions, and the validation process is extended thanks to these
conditions.

In that follows, Q denotes a time-dependent condition which
concerns sequences: it collects all constraints to be satisfied by
the sequences. We denoteQt (s) when the sequences satisfies
the constraints specified byQ at time t.

Definition 16: Let s ∈ SΞ.

• Let t ∈ N. The sequences is (Q, t)-valid if and only if
∀t′ < t, Qt′ (s).

• The sequences is Q-valid if and only if ∀t ∈ N, Qt (s).
The following definition extends the notion of basis to(Q, t)-

valid sequences.
Definition 17: Let t ∈ N. We call Q-minimal basis of

BTARt,p (Ξ) the setBQ
t,p (Ξ) of relations onΞ defined in the

following way:

R ∈ B
Q
t,p (Ξ) ⇔



R ∈ Bt,p (Ξ)

s (R, p, t) is (Q, t) -valid
Then, B

Q
t,p(Ξ) is the subset ofBt,p (Ξ) which collects all

relations useful to generate(Q, t)-valid sequences. This new kind
of basis is helpful to decide if a priority relation generates a valid
scheduling sequence (in the sense ofQ). This decision is reached
thanks to a non-constructive process: only relations are used.

Theorem 4:Let t ∈ N and R ∈ BTARt,p (Ξ). The two
following assertions are equivalent:

1) s (R, p, t) is (Q, t)-valid
2) ∃!R′ ∈ B

Q
t,p (Ξ) such thatR′ ⊂ R

Proof
Let t ∈ N and R ∈ BTARt,p (Ξ). The Theorem 3 shows that

there exists a uniqueR′ ∈ Bt,p (Ξ) such thatR′ ⊂ R, and the
Lemma 4 proves that bothR andR′ generate the same sequence
s.

(1) ⇒ (2) Suppose that the sequences (R, p, t) generated by

R is (Q, t)-valid. Then the sequence generated byR′ is also
(Q, t)-valid, andR′ ∈ B

Q
t,p.

(1) ⇐ (2) Suppose now thatR′ ∈ B
Q
t,p. Then s

`

R′, p, t
´

is
(Q, t)-valid. Consequently,s (R, p, t) is also(Q, t)-valid.
QED
This result proves thatBQ

t,p (Ξ) is a basis of the subset of
BTARt,p (Ξ) composed of the sole relations compatible with a
(Q, t)-valid sequence.

A fixed priority configuration corresponds to a total priority
relation, so the Theorem 4 can be applied to fixed priority
configurations.

F. Building the Minimal Basis

Figure 6 presents the fixed priority generation process. Suppose
that we are in a valid state at timet, i.e. the fixed priority
relation is able to schedule the software onNt−1). We know the
(t, p)-consistent relationR and then the sequences (R, p, t). The
problem is now to decide:

• if R remains consistent when extending the time interval to
Nt;

• if it satisfies the constraints modeled byQ on this interval.

We solve it thanks to a constructive process that follows a
recursive iteration ont. Recall that we have at disposal a sequence

Fig. 6. Computing relations: fromt to t + 1

s which is valid up to timet: we have to extends up to time
t + 1. We can do that by choosing (according toQ) the setα
which collects all tasks to schedule at timet. s is a sequence of
length t − 1; the sequences.α, that extendss into a sequence of
length t, is defined in the following way:

8

<

:

u < t ⇒ (s.α)u = su

u = t ⇒ (s.α)u = α

u > t ⇒ (s.α)u = ∅

Moreover, the priority relation we deal with at each step must
satisfy the two following properties:

1) s (R, p, t) is (Q, t)-valid and(t, p)-conservative,
2) R is (t, p)-consistent.

Property (1) can generally be decided fors (R,p, t) thanks to the
knowledge of the tasks running at timet− 1. For Property (2), a
solution consists in determining ifR is an acyclic relation. This
decision comes from Lemma 5.

Lemma 5:Let R ∈ BTARt,p (Ξ) and α ⊂ s (R,p, t)at . The
two following properties are equivalent:

1) The relation R ∪ RPt (s (R,p, t) .α) does not contain
cycles, ands (R, p, t) .α is (p, t + 1)-conservative

2)


|α| = min
˘

p,
˛

˛s (R,p, t)at
˛

˛

¯

∀
`

τi, τj

´

∈ α ×
`

s (R,p, t)at \ α
´

,
`

τj , τi

´

6∈ R
Proof

Let s = s (R,p, t). One can remark that(s.α)at = sa
t and

∪t−1
t′=0RPt′ (s) = ∪t−1

t′=0RPt′ (s.α).

(1) ⇒ (2) The definition of conservativity involves|α| =

min
˘

p,
˛

˛sa
t+1

˛

˛

¯

, hence the first condition of(2) is fulfilled.
On the one hand, we get (definition)RP(s.α)a

t+1
(α) =

˘`

τi, τj

´

|τi ∈ α andτj ∈ (s.α)at+1 \ α
¯

. On the other hand,(1)

assumes that∪t+1
t′=0RPt′ (s.α) does not contain cycles. So, if

`

τi, τj

´

∈ RP(s.α)a
t+1

(α), then
`

τj , τi

´

6∈ ∪t
t′=0RPt′ (s.α). Hence

the second condition of(2) is also satisfied.
(2) ⇒ (1) We assumes to be (t, p)-conservative, and also

|α| = min {p, |sa
t |}. Then s.α is (t + 1, p)-conservative. From

the second condition of(2), the
`

τj , τi

´

’s which correspond to a
couple

`

τi, τj

´

∈ RP(s.α)a
t+1

(α) do not belong to∪t
t′=0RPt′ (s).

Moreover, we assume∪t
t′=0RPt′ (s) to contain no cycle. So no

cycle can be found in∪t+1
t′=0RPt′ (s.α).



QED
The(t + 1, p)-consistency leads all possible task setsα to contain
the same number of tasks:min {p, |sa

t |}. In general, there is no
unicity for α. In the following, we denote bySCΞ (R, p, t) the
set of possible values forα.

All these results lead us to the following theorem, that gives a
recursive method to buildQ-minimal basis.

Theorem 5:The sequence
“

B
Q
t,p

”

t∈N

satisfies the following

properties:

1) t = 0 ⇒ B
Q
t,p(Ξ) = {∅}

2) t ≥ 0 ⇒
B

Q
t+1,p (Ξ) = ∪

R∈B
Q
t,p(Ξ)

∪
α∈SCΞ(R,p,t)

Qt(s(R,p,t).α)

R ∪ RPs(R,p,t)a
t

(α)

Proof
The relation∅ is (0, p)-consistent and minimal. Then, we get

B
Q
0,p (Ξ) = {∅}.
Let t ∈ N. We note

E = ∪
R∈B

Q
t,p(Ξ)

∪
α∈SCΞ(R,p,t)

Qt(s(R,p,t).α)

R ∪ RPs(R,p,t)a
t

(α)

Let R ∈ B
Q
t,p (Ξ), α ∈ SCΞ (R, p, t) and R′ =

R ∪ RPs(R,p,t)a
t

(α).
By definition, we obtains

`

R′, p, t + 1
´

= (s (R, p, t) .α). From
the hypothesis of Theorem 5 and Lemma 5, we get

• RP (s (R,p, t) .α) does not contain cycles,
• s (R,p, t) .α is (p, t + 1)-conservative,
• s (R,p, t) .α is (Q, t + 1)-valid.

These properties yet stand fors
`

R′, p, t + 1
´

. We get
RP (s (R, p, t) .α) = R′, and thenR′ is minimal. So R′ ∈
B

Q
t+1,p (Ξ).

Let now be R ∈ B
Q
t+1,p (Ξ), and denote byR′ the set

RP (s (R, p, t)). Then R′ ∈ B
Q
t,p and s

`

R′, p, t
´

= s (R, p, t).
By hypothesis, s (R,p, t + 1) is (p, t + 1)-conservative and
(Q, t + 1)-valid. From Lemma 5, we obtains (R, p, t + 1)t+1 ∈
SCΞ

`

R′, p, t
´

, and thereforeRP (s (R, p, t + 1)) ∈ E. SinceR

is minimal, we haveR = RP (s (R, p, t + 1)), and it follows that
R ∈ E.
QED
This theorem gives a constructive technique for the minimalbasis,
that is useful to generate all fixed priority configurations which
satisfy the constraintQ.

IV. COMPUTING THE PRIORITIES

In this section, we use Theorem 5 to produce all valid fixed
priority configurations which are useful to schedule independant
task systems. Firstly we specify the predicate functions (Q) cor-
responding to time constraints and secondly we give the stopping
condition for the generation. Then, we give the algorithm.

A. Validity Constraints

For independent tasks, valitidy constraints are limited totime
constraints: each task must reach its deadline. In our approach,
this property is expressed in the following way:

∀τi ∈ Ξ,∀j ∈ N, Ci,j

`

s, di,j

´

= Ci

This property can be computed by the use of laxities (see Figure
7):

∀τi ∈ Ξ,∀j ∈ N, Li,j (s, t) =
`

di,j − t
´

−
`

Ci − Ci,j (s, t)
´

r i,j
tdi,j

2

1

1

1

1

Li,j (s, r   )i,j

Li,j (s, r   + 1)i,j

Li,j (s, r   + 2)i,j

Li,j (s, r   + 3)i,j

Li,j (s, r   + 4)i,j

Li,j (s, r   + 5)i,j0

=

=

=

=

=

=

Fig. 7. Dynamic laxity of a task

One can show that each task reaches its deadlines if and only
if at any time, all tasks with null laxities are running. In the
following, we denote byVt (s) this property.

B. StabilizingBV
t,p(Ξ)

The Theorem 5 gives a recursive constructive process to
build the V -minimal basis. The aim of this section is to obtain
the recursion stopping condition. In the following, we denote
max
τi∈Ξ

(ri) by r, and lcm
τi∈Ξ

(Ti) by P .

The uniprocessor sequences which are produced following
fixed priority configurations are cyclic with periodP , and the
entrance into the cyclic behaviour is reached before the date r+P

[10]. So, in this context, the time interval to scan for computing
the valid fixed priority configurations is limited to[0, r + 2P ].

For synchronous systems (∀k ∈ [1 |Ξ|] , rk = 0), the multi-
processor sequences which are produced following fixed priority
configurations are cyclic with periodP , and the cyclic behaviour
starts at date0 [11]. Therefore, in this context, the time interval
to scan for computing the valid fixed priority configurationsis
limited to [0, P ].

For these two contexts, the time interval to scan does not
depend on the used fixed priority configuration. Then the basis
BV

M,p (Ξ) collects all valid fixed priority configurations, respect-
ively with

1) M = r + 2P for uniprocessor,
2) M = P for synchronous task systems.

For asynchronous task systems (∃ (i, j) ∈ [1, |Ξ|]2 such that
ri 6= rj) which are scheduled on multiprocessor following a
fixed priority configuration, [11] gives a feasibility interval. Let
us consider the induction defined in the following way:

S1 = r1

∀k ∈ [2, |Ξ|] , Sk = max
n

rk, Tk.
l

Sk−1−rk

Tk

mo

If tasks are sorted by priorities (i > j ⇒ priority (τi) >

priority
`

τj

´

), the multiprocessor sequence produced following
these priorities reaches its cyclic behaviour beforeS|Ξ|. How-
ever, sinceS|Ξ| depends on the priority configuration we deal
with, computing a feasibility interval valid for all fixed priority
configurations leads to consider the maximum of the|Ξ|! different
possible values forS|Ξ|. Therefore the complexity level is high.

The results presented in [11] propose a feasibility interval, but
they are also helpful for a cyclicity diagnosis onto sequences.
Such results can be obtained observing the state of the task



system. Following the sequences, the state of taskτk at time
t is described byC

k,
j

t−rk
Tk

k (s, t), and the state of the whole task

system is the family of states of the individual tasks. Let usnow
consider a timet ≥ r+P . If the task system returns at timet in the
state they were at timet−P , then the sequence is cyclic fromt−
P , and then the feasibility interval is[0, t]. Scanning the condition
State (Task system, t) = State (Task system, t − P ) while t

increases is useful to detect the timet0 when all sequences are
cyclic: from this time, the basisBV

t,p (Ξ) is constant.

C. Algorithm

The algorithm presented in Figure 8 is a recursive implement-
ation for the computing ofBV

t,p (Ξ). The data structure used is a
list of 3-tuples composed in the following way:
• R

a priority relation,
• I = (Ik)τk∈Ξ

the valueC
k,

j

t−rk
Tk

k (s (R, p, t) , t) of the current job ofτk,

• M = (Mk)τk∈Ξ

the state of all tasks at the beginning of the current meta-
period.

M gives the value ofI at time r + P
¨

t−r
P

˝

. Note that the
Ik ’s and t give a total information on the current state of the
system: laxitiesLaxk (I, t), active tasksAct (I, t), and so on,
can be deduced directly.

rec
`

t, R, I, M, B′, a, k
´

:

s :=
k=|Ξ|

Σ
k=1

ak

if k > |Ξ| then
if s = min {p, |Act (I, t)|} then

valid := true

for all τi ∈ Ξ such that ai = 1,
for all τj ∈ Act (I, t) such that aj = 0

if
`

τj , τi

´

∈ R then
valid := false

if valid = true then
B′:=B′ ∪

“

R ∪ RPs(R,p,t)a
t

(a), I + a,M
”

else
if s < p ∧ τk ∈ Act (I, t) then

rec
`

t, R, I,M, B′, (a1 . . . ak−1, 1, ak+1 . . . an) , k + 1
´

if Laxk (I, t) > 0 then
rec

`

t, R, I,M, B′, (a1 . . . ak−1, 0, ak+1 . . . an) , k + 1
´

Fig. 8. BV
t,p(Ξ) computing algorithm

We can now present the minimal basis computing algorithm
(see Figure 9). Each step consists firstly in initializing the
Ik ’s associated with tasks which are awaking, and secondly in
searching for the start time of the cycling behaviour. The basis
is built by calling the algorithm presented in Figure 8. Whenthe
execution is completed,res contains the minimal basis.

This computation stands on two basic operations on priority
relations:searchingandaddinga couple

`

τi, τj

´

in R (for adding,
the properties of the algorithm ensure that the relation remains
cycle-free). A powerful data structure must be developed to
represent(R,I,M).

Some optimizations can be done. For instance, there is no
evolution of R while the running tasks remain unchanged: this

t := 0

B := {(∅, (0 . . . 0) , (−1 . . . − 1))}
res := ∅
while B 6= ∅ do

for all k such that t ∈ rk + TN then
for all (R, I,M) ∈ B do

Ik := 0

if t ∈ r + PN then
for all (R, I,M) ∈ B do

if I = M then
res := res ∪ R

B := B \ {(R, I,M)}
else M := I

B′ := ∅
for all (R,I,M) ∈ B do

rec
`

t,R, I,M, B′, (0 . . . 0) , 1
´

B := B′

t := t + 1

Fig. 9. Minimal base computing algorithm

observation leads us to usetime jumpinginstead of computing
solutions for each possible switch time.

This validation process is also modular: we can study valid-
ity for a subset of the task systems, the relationR obtained
concerns the sole tasks which belong to the concerned subset.
In a second step, this relationR can be integrated into a
validation study of the whole system by initializingB with
{(R, (0 . . . 0) , (−1 . . . − 1))}.

D. From the priority relation to the configuration

The algorithm presented in Section IV-C builds theV -minimal
basis, which collects all valid minimal relations. Here, weare
interested in valid configurations. This is why we must now map
these priority relations into priority configurations. Relations give
information on task priorities. Computing a priority configuration
from a priority relation consists in choosing numeric values
compatible with the relation.

If the priority relationR is total, one of the tasks (let us call
it τ , and note that it is unique) is theR-greatest element ofΞ:
τ ’s priority is the higher priority: we setPriority (τ ) := |Ξ|. We
consider now the restriction R

Ξ\{τ}
of R to Ξ \ {τ}. R

Ξ\{τ}
is

also total: the taskτ ′ of maximal priority can be designed, and
its priority set to |Ξ| − 1. This process is iterated until the set
contains only one task, that is associated with priority1. This
method provides a priority configuration according to the priority
relation with at mostO

“

|Ξ|3
”

operations.
If the priority relationR is partial, then there are two tasksτi

and τj such that
`

τi, τj

´

6∈ R and
`

τj , τi

´

6∈ R. This situation
means that the relationR correspond to more than one priority
configuration. When this context yields we build two intermediate
relationsR1 = R ∪

˘`

τi, τj

´¯

andR2 = R ∪
˘`

τj , τi

´¯

, and we
proceed recursively. This procedure gives a set of total relations.

V. EXPERIMENTATION RESULTS

A. An example of validation

Let us consider the following system of tasks, that we study
on a2-processor architecture.



τj

τ1 τ2 τ3 τ4 τ5 τ6 τ7

τi

τ1 × × × × ×
τ2 ×
τ3
τ4 × × × ×
τ5 × × × × ×
τ6 × × ×
τ7 × ×

Legend A box is marked with× if
`

τi, τj

´

belongs to the
relation.

Fig. 10. Priority relation for the example.

Task ri Ci Di Ti

τ1 15 7 11 38

τ2 47 1 8 38

τ3 4 4 43 45

τ4 17 8 13 19

τ5 43 3 3 6

τ6 22 8 11 19

τ7 30 6 25 25

The classical fixed priority scheduling policies (RM andDM)
do not schedule this task system. One can note that also classical
dynamic priority scheduling policies (EDF and LLF ) do not
schedule them. Let us now use the here-presented methodPFX.
The minimal basis is produced thanks to the algorithm presented
in Section IV-C. The computing is completed att = 17147 and
produces a single priority relation (denotedR below). The graph
of this priority relation is presented in Figure 10.

Since the basis is not empty, this task system can be scheduled
by a fixed priority based scheduler. We use the method described
in Section IV-D to determine the fixed priority configurations
corresponding to this relation. One can remark that this relation
is not total, sinceτ1 andτ5 can not be separated. Therefore, the
partial relation can be used to produce two total relations which
correspond to two different sets of solutions. In our example,
these two relations are:

R1 = R ∪ {(τ1, τ5)}
R2 = R ∪ {(τ5, τ1)}

The relationsR1 and R2 are total, so we can now compute
some corresponding priority configurations:

Task R1 R2

τ1 7 6
τ2 2 2
τ3 1 1
τ4 5 5
τ5 6 7
τ6 4 4
τ7 3 3

This example shows that our method produces solutions which
are out of reach of all classical methods, includingLLF . These
solutions are obtained quickly, since the computing time for this
task system is less than0.1 second on an2.5GHz Apple-G5
machine.
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Fig. 11. Performances of each scheduling method

B. Average performances

In this section we compare our methodPFX with the usual
scheduling policies (RM , DM , EDF , LLF ) and with the fixed
priority scheduling method RM-US

h

m
3m−2

i

proposed in [2]. We



have generated samples composed of1000 task sets. Each sample
is characterized by a CPU-load and a target: all task systems
which belong to a specific sample are designed for the same
number of processors and share the same CPU-load. Task’s
parameters are integer numbers attributed by using the following
rule:

1) the periods (Tk) are random numbers in[1, 100],
2) the WCET (Ck) are random numbers in[1, 40],
3) the deadlines (Dk) are random numbers in[Ck, Tk],
4) the release times (rk) are random numbersin[0, Tk].

To obtain the required CPU-load for a task system, we add tasks
until the targeted value is reached. Consequently, the number of
tasks in a system is not fixed, but its average number is10.

A scheduling simulation is performed for each generated task
system, following all experimented scheduling techniques. So we
associate each couple(sample, scheduling technique) with the
number of task systems in the sample which can be scheduled
following the technique. We call this numberscheduling power
of the technique for the sample. Figure 11 presents the results of
these experimentations.

We are interested inPFX performances, because it is the
fixed priority relation generationtechnique presented in this work.
PFX results correspond to the maximal scheduling power we
can expect from the fixed priority schedulers existing in real-
time kernels. One can remark that some generated task systems
can not be scheduled in this way.EDF and LLF are optimal
on uniprocessor, therefore their performances are references for
our tests. For synchronous task systems,DM is also optimal on
uniprocessor and consequentlyPFX does not bring a signific-
ative improvement.DM seems to be a very good fixed priority
scheduling policy for the uniprocessor context.

On the contrary, no on-line policy is optimal in multiprocessor
[12]. The evaluations presented in Figure 11 show thatLLF

outperforms all other methods. However, the schedules generated
by LLF are characterized by large numbers of preemptions and
switches. For some systems, this is not an issue; for others,a very
high preemption level makes the resulting overhead unacceptable.
In our performance evaluation computings,LLF must be view as
an aid to minimize the number of task systems whose feasibility
has to be tested.

Of course,PFX outperforms all fixed priority policies: we can
observe thatRM and DM policies do not reach the scheduling
power of the fixed priority scheduling. We can also observe
(and it is surprising) thatPFX also outperformsEDF in the
multiprocessor context. Last but not least:PFX can find all
valid fixed priority configurations. This technique seems tobe
very promissing.
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Fig. 12. PFX configurations computing time

Figure 12 presents thePFX solution average computing times
for a task system. We deal with a2.5GHz Apple-G5 machine.
One can remark that computing times vary as the inverse of
system loads. This is a consequence of using of minimal bases
for representing sets of solutions at timet: the complexity is
proportional to the number of valid sequences of lengtht instead
of the number of fixed priority configurations. Hence, the more
the systems are constrained, the less is the number of solutions
to build. This (intuitive) property is very interesting, itcertainly
makesPFX a good solution for real case studies. Moreover, one
can see our implementation ofPFX as a breadth-first search.
To get quickly a solution, one can implement it as a depth-first
search.

VI. CONCLUDING REMARKS

We have presented a new method,PFX, for determining
fixed priority configurations to schedule real-time systemson
multiprocessor. Experimentations have shown that in this context:

1) RM and DM are powerless, since more than50% of the
fixed priority feasible task systems can not be scheduled
using these policies,

2) PFX outperformsRM , DM , and alsoEDF ,
3) PFX reaches solutions which can not be obtained with

classical scheduling methods,
4) PFX can findall valid fixed priority configurations.

These results show thatPFX is very useful and efficient for
multiprocessor scheduling of real-time systems. Our implement-
ation of PFX can be improved in different ways: optimizing
data structure, depth-first search instead of breadth-firstsearch,
incremental search, etc. In a near future we plan to extend the
scope of this technique with resource sharing protocols. Designing
hybrid scheduling algorithms involvingPFX and other classical
scheduling techniques is also a challenging research topicwhich
is in progress by the authors.
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