A New Method for Determining Fixed Priority
Configurations for Real-Time Systems on
Multiprocessor Targets

Bernard Chauviere, LISI, ENSMA, F-86961 Futuroscope Ghrasuil Cedex
Dominique Geniet, LISI, Univ. Poitiers, F-86961 FuturogedChasseneuil Cedex
René Schott, IECN and LORIA, Univ. H.Poincaré, F-5450@d@euvre-les-Nancy Cedex

Abstract— Several methods have been developed for determin- This method is optimal, and it is useful to find fixed priority
ing fixed priority configurations on uniprocessor. In this paper, configurations different from RM or DM priorities. [1] prose
we present a new method, called”F'X, for determining fixed that this method is not optimal for the multiprocessor ceiteut

priority configurations on muiltiprocessor. PFX follows an off- 71 ,c0 it to produce multiprocessor fixed priority configions
line approach: our constructive process uses an inductiverealysis . . S
which are different from RM priorities.

of the whole set of possibilities. ThereforeP F'X provides all valid ; . .
fixed priority configurations. Experimentations (section V) show In this paper we present an off-line method we ¢al X which
that PFX is very efficient on multiprocessor and subsumes Rate generates recursively (with respect to the length of exmcut
Monotonic (RM), Deadline Monotonic (DM) as well as Earliest sequences) all valid fixed priority configurations. We lirttie
Deadline First (EDF). In addition, we have found task systera complexity level of the process by using a basis concept hwhic
which can be scheduled byPF.X, but can not be scheduled by merges all priority configurations which generate sequendth
RM, DM, EDF or Least Laxity First (LLF). identical prefixes. The time complexity ¢tF X depends on the

Index Terms— Real-Time, Fixed priority scheduling, Multipro- number of solutions, not on the size of the task system. Our
cessor, Asynchronous periodic tasks, Hard deadlines experimentations confirm this result, since the computatime
decreases when the load of the task systems increases.

Our method produces all valid fixed priority configurations.
It is therefore optimal for attributing fixed priorities inhe

The scheduling of real-time systems relies upon the use -of apultiprocessor context. The knowledge of all valid confagioms
erating systems (for example VxWorks). Usually, these @iy makes the designer able to select the best one accordingdifisp
systems use fixed priority scheduling: the priorities atglatted criteria: response time, jitter, etc. Following the samehtéque
to the tasks at the start and remain fixed. Priorities arergéye that [7], we have foundPF X-schedulable task systems which
attributed as follows: either the designer decides therifige can not be scheduled using RM or DM (and also, sometimes,
according to the needs of the system and to his experiend® omsing EDF or LLF): we are able to produce a valid fixed priority
uses a fixed priority policy which determines the priorityeafch configuration for these systems using our techniqegX deals
task. with the following context: multiprocessor, asynchronsystems,

Many policies have been proposed for uniprocessor schrefuli hard deadline. It produces solutions which are not reaclkéedyu
for example Rate Monotonic (RM) and Earliest Deadline Firgithers scheduling techniques.
(EDF) [15], Deadline Monotonic (DM) [14] and Least Laxity This paper is organized as follows: Section Il presents the
First (LLF) [12]. EDF and LLF are optimal on uniprocessor, DMsoftware and hardware context we deal with. Then, Sectibn I
is optimal on uniprocessor when the tasks start simultasigougives the principles of our approach, and Section IV pravide
and RM is optimal on uniprocessor for synchronous task systepractical implementation aspects. The experimentatiacticse
with implicit deadline. Necessary and sufficient condiidmve concludes the paper: we compare the scheduling power of our
been proved for a policy to produce reliable scheduling afskt method with classical approaches (RM, DM, EDF, LLF) and with
system for RM [13] and for EDF [15]. The reader interested ithe methods proposed in [5] and [2]. Results are surprising!
real-time scheduling surveys can read [4][16].

[12] shows that no scheduling policy is optimal on multi-
processor. In this context, we observe the following qatilie A. Software context
results. RM and DM are low level performing and then must be We consider real-time systems composed of a (static) finite
used with care. Observing our experimentation results sthhedv number of independent periodic tasks. The current taslesyst
EDF is also a low level performance policy. By the way, LLFdenoted byE in the following.
is not an event-driven policy and its implementation is ¢fere Each taskr; € = is a program designed to react to a specific
not realistic. [6] proposes a new algorithm called PFair seho evente;. Each occurrence; ; of e; is associated with its occuring-
optimality has been proved for synchronous task systemis witme ¢; ;. The software reaction te; ; consists in creating a job
implicit deadline. PFair has the same drawback as LLF. 7;,; based on task; — i.e. runningr;'s code — that is activated

Another strategy to solve the scheduling problem for a tasit timet; ;. If we get3T; € N* such thatvj € N, ¢; ; = r; + jT5,
system consists in finding fixed priority configurations whicthe taskr; is calledperiodic andT; is calledperiod of 7;. If not,
make it feasible. [3] proposes such an approach for unigsme 7; is calledaperiodic In this paper, we deal with periodic tasks.

. INTRODUCTION

Il. CONTEXT

Each taskr; is characterized by the following time attributes: This is why we consider discrete time: the integeorresponds
« 7; is the first release time, i.e. the timg, associated with to the time intervalz, ¢ + 1[. For simplicity, we denote by the

the first occurrence of;, set[0,¢] NN, and byN; the set[1,#] N N.
« C; is the worst case execution time (WCET), Definition 1: A scheduling sequencg:),. is a sequence of
« D; is the relative deadline, i.e. the time delay between tifaibsets of. For every timet € N, the sets; collects all tasks
release time and the deadline of each jobrof running at timet.
e T; is the period. We denote bySz the set of scheduling sequences=of

We consider that all temporal parameters are natural nusnber Example 1:Consider the following task system, called
All jobs of 7; share the attributes’; and D;. The release time SNf-One: Task 7 T TD T T
of the jobr; ; is ri; = ri + 4T}, and its absolute deadline is - 0T 1T 313
d;; = r;; + D;. Atask can not be parallelized, € < D;. In TQ ol 21616
addition, we assume that tasks are not reentrBpt< T;. s ol 1| 4| a

One possible-processor scheduling sequence for this example

B. Hardware context is the permanent iteration of the sequence presented ime=igu
Real-time applications can be hosted on various hardware

systems. Three different contexts are typical: unipraagssulti- T . ewm . ewm . wwm

processor and distributed architectures. In the disgibaontext, 7 mm . mm . e owm]

processors are not directly interconnected: communicatstand 3] mm e - - -

on a network. So delays induced by networking have to be cafig. 1. Scheduling sequence fonf_one

sidered as scheduling constraints. Such parameters ugedntot

deterministic, because they depend on the networking lainav Ataskr; € = is active if its current job is not yet completed, so

On the opposite, the multiprocessor context correspondhigo some statements are pending. Active tasks can be defineklsthan

use of memory sharing (PRAM model): process communicatida the total CPU-owning time of their successive jobs.

is completed inO(1) time. Definition 2: Let s € Sz be a scheduling sequence and N.
Two different approaches (partitioned and global) havenbe&or any jobr; ;, we get:

developed for the study of multiprocessor architecturasthie wt—1

partitioned approach, tasks are attributed beforehandatdh e Cij(s,t) = >y [su N {7}

processor. So the multiple instance problem is equivalena t C we eio _

uniprocessor scheduling problem. Nevertheless, thesitttibu- \Ijlveer‘rlzr: :]23\5 ;o;iﬁer;ﬁé vrxllgti%itg?;gi,\fé ;12[(_

tion of tasks on processors is NP-hard [8]. Conversely, tbbaj Definition 3: Let s € S= be a scheduling sequence and N.

approach allows the different jobs of the same task to beutgdc 1o taskr; € = is active at timet € N if and only if:

on different processors. Under the total migration assiampt

dynamic processor changes are possible for the same job. [8] t>rpandC, oy (s,t) <Cj
gives a classification of the different multiprocessor sithiag We denote bys? the set 0?" active tasks at time in the
problems. scheduling sequence

In this paper we deal with multiprocessor architecturesthvé Example 2: Gantt's chart presented in Figure 1 gives the tasks
global approach. We assume that the global migration assmp rynning at every time. Table | completes this chart with teecs

is fulfilled: jobs can migra_te at any time. In addition, task® active tasks and the value of the total CPU-owning time aequi
supposed to be preemptive: a task can be suspended dufpGach task.

execution in order to allow the treatment of a higher prjodnhe.

In the following, p is the number of processors of the currently t s¢ st C. B3 (5, 1)
7, T;
used target. - = -
(i=1)] (E=2) | (=3
. 0 | {r1,m,m3} | {m, 3} 0 0 0
C. Scheduling Sequences 1 (11,72} f 0 1 1
A scheduling sequence models the execution of a task system.| 2 {m2} 0 1 1 1
At every time, a scheduling sequence collects the set ofimgnn 2 {T{lTvT}Q} {T{lTvT}Q} 2 ; é
tasl_<s_,_i.e. tasks Whi_ch OWn & processor. This section piseme 5 5 5 1 2 1
definitions concerning this concept. 6 {1, 72} {1, 72} 0 0 1
Time is modeled by the s@&™: 0 corresponds to thimit of the 7 {m} 1 1 1
real-time software we are concerned with. We assume that if n g {?7’17}3} {?7’17}3} é % 2
event occurs on a time intervl, t2[, then there are no changes 10 0 0 1 2 1
in the set of running tasks between and t,. We also assume 11 0 0 1 2 1
that there exists a delay € Rt such that if two consecutive TABLET
evenISel and es OCCUr at timesfl andtg, thentg _ tl c uN. u CHARACTERISTICS OF THE SCHEDULING SEQUENCE DEFINED IN FIGURE
is the minimal observation capacity of our system. For imsta 1

it may be the duration of any atomic statement on the corsitler

target architecture. We consider thatis our time unit, i.e. that A specific scheduling is planned to be executed on a specific
u = 1. Then, observing the evolution of the system at timeN architecture. Its feasibility involves its ability to ssftf some

is equivalent to observing it at any time ¢ + 1]. constraints depending on the architecture. In this work,deal

with PRAM architectures, so the only characteristic we nuest|
with is the limitation of the number of processors. Rementbhat
p denotes the number of available processors.

A scheduling sequence isompatible with a p processor

are identical as soon as the priorities assigned to twordiite
tasks are never compared by the scheduler (for example, when
two tasks can never be active simultaneously).

To produce the sequence corresponding to a specific config-
architecture if it never plans to execute more thantasks uration, the scheduling algorithm chooses at each timepthe
simultaneously. Moreover, a scheduling generated for ktirea higher priority tasks among the set of active tasks. Thefahg
operating system is work-conserving: no processor can lge idefinition shows how scheduling sequences are associatbd wi
when there are pending tasks. In the following, we are isterk fixed priority configurations.
in this kind of scheduling. The next definition formalizesthkbse Definition 6: Let A € C= be a fixed priority configuration on
notions. =. The scheduling sequence &rgenerated byl on ap processor

Definition 4: Let s € S=. architecture is defined as follows:

« s is p-compatible if and only ifvt € N, |s¢| < p. vVt €N,

« sisp-conservative if and only ift € N, |s¢| = min {p, |s¢|}. s(A,p), = {m € s(A,p){ such that|E; Ns(A,p)| <p}

e Lett e N, sis (p,t)-conservative if and only if: where E; is the set

Yu < t,|su| = min {p, {SZ{} E;, = {Tj € = such thatA (Tj) > A(Ti)}
We denote bysE the set ofp-compatible scheduling sequences Note that a sequence(A,p) generated thanks to a fixed
of =. priority configurationA € Cz is alwaysp-conservative.

D. Fixed Priority Configurations I1l. FIXED PRIORITY SCHEDULING

A scheduling algorithm keeps the set of active tasks sortedScheduling tasks using classical policiggM{, DM, etc.) is
following a specific criterion, callegriority. Priorities are imple- useful, because these policies are implemented into iraal-t
mented as numeric values, then sorting tasks stands ontili@ina operating systems. They are optimal for the uniprocessatega
order onR. Unfortunately, the optimality results are no longer validthe

Priorities can bestatic or dynamic When they are static, the multiprocessor context, and these policies are signifizdets
value associated with each taskis defined before starting the efficient. Searching alternative fixed priority configuoats may
execution, and can not be modified while the software runenThlead to limit this loss of performance, and can produce &nist
all jobs 7; ; concerning taskr; are associated with the samecompatible with existing operating systems.
priority. Moreover,; andr; are associated with different values. |n this section, we characterize the sequences which can be
This strategy is calledixed priority configurationsSo a fixed generated thanks to a fixed priority scheduling algorithna we
priority configuration corresponds to a total order on thektset. show how the corresponding fixed priority configuration can b

RM and DM are calledfixed priority policies However, they produced.
do not satisfy all properties of fixed priority configuratoorR M/
and DM can assign the same priority to two different tasks o .

(e.g. when periods are equal), therefore they do not invalve” Priority Relations

total order. This is why a second criterion is usually assec A fixed priority configuration which generates a scheduling
with these policies, to make the scheduling process detéstit. sequence can be computed if and only if a configuratidne C=

for instance numbers of tasks can be used. Hence, a fixglich satisfiess = s(A,p) exists. Searching! leads to search
priority policy can be associated with an equivalent fixeidnity a binary transitive relation o&. In this section, we characterise
configuration, but it is not true in general. the binary relation according to a specific scheduling.

This is why one must distinguish fixed priorityolicies from Choosing r; when both7; and 7, are also active involves
fixed priority configurations configurations reach all fixed priority that the priority level ofr; is maximal in the sef{r;,7;,7;}.
schedulings, but policies may not. In this work, we focus o®bserving these properties while following a sequercean
computing configurations, and we do not deal with looking fdead to a fixed priority configuration compatible with This
policies corresponding to specific configurations. In tldibfvs, computing process stands on the notion of priority relation
we present the basic notions on fixed priority configurations Definition 7: Let A C = be a set of active tasks arfedl C A

Definition 5: A fixed priority configuration orE is a bijection its subset of running tasks. We call priority relation indddoy
A:E—-Ng,. the setsA and B every couple which belongs to the deP4 (B)

We denote byC= the set of fixed priority configurations db. defined in the following way:

Example 3:For the task systentnf_one, the RM policy
associates; with 71, & with =, and with 5. This is equivalent RP (B) = {(7;,7;) |7 € Bandr; € A\ B}
to 7 < 3, 2 < 1 and 73 < 2. For this task system, we The following definition gives the induced priority relat® at
can useRM or DM priorities, or any other equivalent priority time ¢ for a given execution sequence.

configuration: Definition 8: Let s € S= andt € N. We call (s, t)-induced
RM DM Other. .. priority relations on= the set defined as follows:
T < 3|lm < 3|m < 3
TS5 — 1|71 < 1| m < 2 RP; (S)ZRPSQL (st)
™ e 2|lm e 2|1 e 1 Example 4:For the scheduling sequence of the task system

Each fixed priority configuration leads the scheduling atbor

cnf_one (see Example 1), we get the followin@, t)-induced

to produce a specific scheduling sequence, but these sexguempciority relation sequence on the time interedy; :

t RP; (s) t | RP(s) Theorem 1:Let s € Sz, and A € Cz such thats (4,p) = s.

0 | {(m2,m1),(m3,m)} || 6 0 Then s is p-conservative andzP (s) does not contain cycles.

1 {(r1,72)} 7 0 Proof

2 0 8 0 " Let A be a fixed priority configuration such that A, p) = s.

3 0 9 0 Using Lemma 1, we geRP (s) = RP (s (4,p)) C RP (A). Since

4 0 10 0 RP(A) does not contain cycles, this property stands also for
5 0 11 0 RP (s). Moreover,s (A, p) is p-conservative, hence the property

As far as we consider fixed priority context, belonging to @|sg stands fok.
specific R (s) leads a condition to stand for every> ¢, i.e. QED
for the whole life of the software. This is why we define thé | emma 2:Let A € = and s € S= be a p-conservative

priority relations induced by a sequence as follows (rett@t sequence such th@P (s) ¢ RP (A). Fort € N, we get:
the transitive closure of a binary relatigd is denoted byR).

Definition 9: Let s € S=. We call s-induced priority relations st = s(A,p){ = st =s(A,p),
on = the set: Proof
Let t € N such thats{ = s (A, p);. Sinces is ap-conservative
RP(s) = U RP;(s) sequences (A,p), = s(A4,p); leads tos; = s¢, and then to
S

Example 5:For the scheduling sequenggresented in Figure %t = ° (A4,),- .
1, we get the followings-induced priority relations (see the table €t US Now suppose thal(4, p), # s (4, p);. Then there are
of RP, (s)'s on Example 4): two tasksr; andr; such that
{ Ti €s (A7p)t

Tj e S (Avp)(tl \S (A7p)t

By definition of s (A, p), every couple(r;, 7;) which satisfies

RP(s) = {(11,m2),(m2,71), (13, 71) , (73, T2) }

T em . em . em . em this property satisfies alsal (r;) > A (r;). By definition of
2 0l mm . sl wm wm | RP (A), we get(r;,7;) € RP(A). We know thatRP (A) does
5ol mm em . wm wwm . wm not contain cycles, and the lemma assumi&3(s) C RP (A).
Fig. 2. Scheduling sequence fonf_one Then (7;,7;) can not belong t&?P (s). Consequentlyr; & s; or

7 & s¢ \ st. Thus we get the following possible cases:
Let us now consider the uniprocessor scheduling sequence 1) {ri,7} C st
concerningcnf_one and presented in Figure 2. Theinduced 2) {Ti’é} C 53\ st

priority relation computing leads us to 3) 7, € s andr; € s\ sy

RP (S/) ={(73,71), (73, 72), (71, 72)} Case 1

Sinces and s (A, p) are bothp-conservative and sincef =
s(A,p)y, we get|s;| = |s(4,p),|. Case 1) is characterised by
the properties{r;,7;} C s¢, ; € s(A,p), and; € s(A,p)} \

. ib luti on th e t b " ds(A,p)t. Then there exists;, which satisfies the properties
S a possible solution. On the oppositecan not be generate T € s(A,p), and T, ¢ s;. The existence of such a task leads

in this way, because a valid fixed priority configuration ddou , ' . .
satisfy all relations inRP (s). This is not possible, because a”v\?it&ﬂ;r’wg)hjpgt];e(gi and (7, 7¢) € RP (s), that is incompatible
tasks should share the same priority level, that is incoitlgat
with fixed priority scheduling. { RP (s) C RP(A)

Therefore, no fixed priority scheduling can generate a adhed RP (A) does not contain cycles
ing sequence as soon afkP (s) contains a cycle.

Note thats and s’ induce different priority relationss’ can
be generated thanks to fixed priorities as soon as task tori
satisfy RP (s'). The configurationr; < 2, 7 < 1 andr3 < 3

This is a contradiction: Case 1) is impossible.

Case 2

B. Fixed Priority Relations The proof is similar to that of Case 1): we obtain a tagk
In this section, we present a necessary and sufficient ¢onditwhich satisfiesr;, € s; and 7, € s(A,p),. These properties

for a sequence to be produced from a fixed priority policy. Welead to (3, ;) € RP(s) and (7;,7,) € RP (A). We obtain a

first extend the notatio® P to fixed priority configurations. contradiction.
Definition 10: Let A € C=. We call set of priority relations Case 3
induced byA the set This case leads te; = s (4, p),. Since both other cases cannot
ield, Case3 gives the only possible conclusion.
RP(A):{(Ti,Tj) 652 such thatA(Ti)>A(Tj)})(/DED g ye
By construction,RP (A) does not contain cycles. Theorem 2:Let s € Sz be ap-conservative sequence such
Lemma 1:Let A € C=. We getRP (s (A,p)) C RP (A). that RP (s) does not contain cycles. There exists a configuration
Proof A € C= which satisfiess (4,p) = s. Moreover A is unique as

Let ¢t € N and (r;,7;) € RP:(s(A,p)). The definition of ¢u0n asrP (s) is a total relation.
RP; (s) leads tor; € s(A,p), and7; € s(A,p)i \ s(A4,D); Proof
The definition ofs (A, p) leads toA (r;) > A(7;), and then to —pp (s) does not contain cycle. Then it can be extended into a
(i, 7j) € RP (A). total and cycle-free relatio®. SinceRP (s) C R, there exists a
QED fixed priority configurationA such thatRP (A) = R.

To reach the result of Theorem 2, we proceed by induction on T 1 \
¢ to prove the property LT N |

Vk € Njz,V (i,t) € N?, Chr,it (5) = Crit (5(A,p)
For ¢ = 0, this property yields.
Let us suppose that it stands fioe N. By definition of A, we

getsy,; = s(A,p)y,,. Moreover, Lemma 2 proves that,; =

* *

s(A,p),4,- Then, we get %0 = {Ti’TQ’Tg} 1= {[2’73}

Vk € Nfg|,Vi € N, Cp 41 (5) = Crits1 (5 (4,p)) A(r1) > maz (A(r2), A(73)) A(r3) > A(72)

, 1 !
Her_me this property stands far € N. Consequently, the s0 = {m} s1 = {73}
following property also stands:)) . -
Fig. 3. Generating a scheduling sequence from a prioriggtioel computed
VteN,sf =s (A,p)f from a fixed priority configuration

Then Lemma 2 gives't € N, sy = s (4, p),.
If A is a priority configuration which generates we get thenr; runs. At timel, ; is completed, then it is no more trying

RP (s) C RP (A). If RP (s) is a total relation, we geRP (s) = to access a processor. Consequently, the scheduler hasdsech
RP (A), henceA is unique. betweenr, andr3. Unfortunately,R gives no information about
QED the couple(rs, 3). Therefore, the scheduler can choose any of

These properties are useful to characterize the set ofaedathat these tasksiz does not lead to a deterministic scheduler.
are compatible with a fixed priority policy.

Definition 11: T I ‘

1) Every binary transitive relation o& is called a priority T 1 ‘ 1
relation on Z. We denote byBT Rz the set of these T3 1 1
relations.

2) Every binary transitive and acyclic relation &nis called a
fixed priority relation on=. We denote byBT AR (=) the
set of these relations.

s6 = {m1, 72,73} s1 = {72,713}
i 1 !
C. Consistency | N 3 (r.m2) € R (r2.73) & R
Theorems 1 and 2 give a necessary and sufficient condition to (r1,73) € R (r3,72) & R
decide if a specific scheduling sequence can be generatideon- | !
from a specific fixed priority configuration. so = {r1} 51 =7
The scope of this section is to extend this result to priority ! !
relations, i.e. to give a necessary and sufficient conditiseful R is (1,1)-consistent R is not (2, 1)-consistent

to decide if a specific priority relation is compatible witlsgecific
scheduling sequence. We call this properonsistency

A total relation corresponds to a priority configuration @i
generates a unique scheduling sequence. On the opposite, wh Definition 12: Let R € BTAR(Z) andt € N. R is (t,p)-
it is not total, nothing can be deduced in terms of compitbil consistent if and only if there exists(a, t)-conservative sequence

Fig. 4. A scheduling sequence generated from a prioritytiogla

with priority driven on-line scheduling generation. s € Sz such that 5 RPy(s) C R.
Example 6: Consider the following task system: A sequence which satisfies thép, t)-consistence property for
ri | Ci | Di | Ty | A(m) R is called compatible withR.
n| 0] 1|44 3 We denote byBT AR;,, (2) the set of(¢, p)-consistent rela-
| 0] 2] 6|6 1 tions.
s 0]1 3|13 2)) The useful properties dt, p)-consistent relations are presented
We consider a specific priority configuratioft which associ-

in the following lemmas. One can remark that the Lemma 2 leads
ates the priorityA (7;) with taskr;. Figure 3 presents the very fII’StRP(A) to be (¢, p)-consistent for alk € N and allp € N as soon
steps of the corresponding scheduling sequence. One camken¢ o configuratiom concerns fixed priorities.

that scheduler decisions are deterministic (one possibtece Lemma 3:Let t € N, R € BTAR;, (=), and s € S= and

at each switch time). Definition 10 gives the relati®P (A) ' e o

/ . .
. . € S= two R-compatible scheduling sequences. We get
associated withi: s E p g seq v

Ni_1 = su =).
RP (A) ={(r1,72),(11,73), (73, 72)} Proof
~ SinceR is a(t, p)-consistent relation, it does not contain cycles.

This relatlogﬁleads the scheduling algorithm to producesti®e Thys, there exists a fixed priority conflguratlehsuch thatR
sequence Y1

NOW, consider the relatiomr = {(7—1’7—2)’(7—1’7_3)}_ Flgure RP (A) Moreover the lemma aSSUI’nESUO RPf/() C R C
4 presents the very first steps of the corresponding sctmeduliRP (A). Then we deal with the hypothesis of the Lemma 2, who
sequence. At timé&, R associates the highest priority with, requiresRP (s) C RP (A). Therefore, the Lemma 2 stands on

N;_1, and then we get

V' <t,sh =s (A,p)s = sy = s (A, p)y

Using this property in the same way as in the proof of the

Theorem 2, we obtain
V' <t sy =s (A,p)yp
Following the similar way fors’, we get
vt <t s =s (A, p)y = s

QED

~ Therefore, all scheduling sequences compatible witf, a)-
consistent relation share the same scheduling choices tiroen
0 to time ¢. This common subsequence is denoté®, p, ¢). To
satisfy the definition of scheduling sequences (see Definiti),

s (R,p,t) must be precised for all € N, hences (R, p, t),, must
be defined for’ > ¢. This is why we use the following extension:

Vt' > t,5(R,p,t), =0

Lemma 3 shows that consistency leads the sequence producele denote by B, o (

by the scheduler to be unique, and then the scheduler to
deterministic. The following lemma proves the monotoryiaf
consistency orBT AR (E).

Lemma 4:Lett € N, R € BTAR;, (E) andR’ € BT AR (Z).
If R C R',thenR’is (t,p)-consistentand (R, p,t) = s (R, p,t).
Proof
~ By definition, s (R, p, t) is compatible withR’. ThereforeR’ is
(t,p)-consistent. By definition (R, p,t) is also compatible with
R'. 1t follows that s (R,p,t) ands (R', p,t) are compatible with
R’ and the Lemma 3 involves

v <t,s (R,p,t)y =s (Rl,p7 t)t,
By definition we get also
vt' >t s (R,p,t)y =s (R/,p,t)t, =0

QED

D. Basis for Consistent Relations

Basis Relations Sequences

S

Generation
Every sequence is reached from the basis

Minimality
Avoiding one/\f may lead a reached sequence to be lost
Avoiding one/\/ lets the set of reached sequences unchanged

Fig. 5. Characteristics of a basis of relations

BT ARy, (). Lemma 4 leads to a special basis composed of
minimal relations in the sense of inclusion.

Definition 14: Let ¢t €¢ N and R € BTAR:;,(E). R is a
minimal relation if and only ifR = RP (s (R, p,t)).
) the set of minimal relations of

B4R, , (=)

This definition means that a minimal relatighis optimal for
the generation of the sequengér, p,t). The following theorem
proves thatB; , (Z) is a basis ofBT ARy p ().

Theorem 3:Let R € BT Rz andt € N. The two following
assertions are equivalent:

e R is (¢,p)-consistent

e IR € By (Z) such thatk’ C R
Proof
~ Suppose that there exisi € B, (2) such thatk’ c R. By
definition, R’ is (¢, p)-consistent, and Lemma 4 proves ttRifis
also (¢, p)-consistent, becausk’ c R.

Since R is (t,p)-consistent, we getRP (s(R,p,t)) C R.
Moreover, this set igt, p)-consistent and minimal. Then we get
RP (s(R,p,t)) € Btp (). So, we getRP (s (R, p,t)) € Bt,p (B)
and RP (s (R,p,t)) C R.

Let R € Bip(Z) such thatR’ C R. Lemma 4 proves
that s (R',p,t) = s(R,p,t), and we get (Definition 14" =
RP (s (R',p,t)). Therefore, we hav&®’ = RP (s (R,p,t)).

Searching valid fixed priority configurations leads to telt & pence for each minimal relation such that c R, we get

possible configurations (there af®|! configurations to test). As

R' = RP (s(R,p,t)). Therefore, there exists a unique relation in

soon as|=| is large, the enumerative approach can not be used (=) such thatr’ c R.

anymore. In this section, we define a new concept, usefutrii i
the complexity of the testing process: the notion of basig of)-
consistent relations (see Figure 5). These bases will aliswo
determine the valid fixed priority configurations by avoulithe
complete enumeration of configurations.

Definition 13: Let t € N and E C BTAR;), (E). E is a
basis of BT AR; , (Z) if and only if for everys € Sz which is
compatible with a priority relation 0BT AR; , (), there exists
a uniqueR € E such thatvt’ < t,s(R,p,t); = sy'.

QED
~ So the setB; , (Z) is a basis ofBTAR; , ().

Definition 15: The setB; , (Z) is called the minimal basis of
BT ARy) (2).

The Theorem 3 shows that the minimal basis is useful to decide
if a relation R is (¢, p)-consistent: this property is reached as soon
as R contains one relation of the basis, it is not necessary to go
back to the corresponding scheduling. Note that the minbasis
is the sole basis that satisfies the Theorem 3.

Generating a basis is useful to avoid redundancy: the number

of relations inE is the number of valid sequences of length

which can be generated from a fixed priority configuration.
There are several bases B AR; , (£). This property can be

observed ift = 0. There is only one sequengef lengtho, so all

E. Q-Validity

Previous sections provide results to decide if a specifieciah
ing sequence can be generated according to fixed priorigg rif

bases of BT ARy, (2) contain exactly one element. Moreoverthis decision is positive, we know how to generate a fixedrjtyio

all fixed priority configurations generate the same sequeaice

relation compatible with all fixed priority configurationseful to

length 0, and then each fixed priority configuration is a basis ajenerate the sequence.

We are now interested in integrating usual specific reaktim 54, =s,a
constraints into this methodology: deadlines, resoureeiisg, etc. R

.. t > sb =5 b RP ‘/)-
This is the aim of this section: constraints are modeled bichd o= sRpd) t+] = Ot 238
conditions, and the validation process is extended thamkisetse ! o : i
conditions. J s =5,2|_JrPL,] |

In that follows, Q denotes a time-dependent condition which A F sl ’/7 wl] |

concerns sequences: it collects all constraints to befigatiby Testing all choices
the sequences. We denafs (s) when the sequence satisfies A
the constraints specified by at timet. T

Definition 16: Let s € S=. I there i i cycle e

Building . | /
corresponding ’

e Let t € N. The sequence is (Q,t)-valid if and only if ‘ itis Q- Vahd ete.
V' < t,Qy (5). S

« The sequence is Q-valid if and only if V¢ € N, Q¢ (s). Risi N

The following definition extends the notion of basis(19, ¢)- S, = S(Rp,t+1)

valid sequences.

Definition 17: Let ¢t € N. We call @Q-minimal basis of
BT ARy, (2) the setBQ (Z) of relations on= defined in the Fig. 6. Computing relations: fromto ¢ + 1
following way:

t+1

R S Bt7p (E)
s(R,p,t) is (Q,t)-valid

Then, BQ »(E) is the subset ofB,, (£) which collects all
relations useful to generat®), ¢)-valid sequences. This new kind
of basis is helpful to decide if a priority relation genesagevalid
scheduling sequence (in the sensé&)f This decision is reached
thanks to a non-constructive process: only relations aeel.us { u<t = (s.a)

s which is valid up to timet: we have to extend up to time
t + 1. We can do that by choosing (according @ the seta
which collects all tasks to schedule at times is a sequence of
lengtht — 1; the sequence.q, that extendss into a sequence of
lengtht, is defined in the following way:

Re BY, (2)<:>{

uw — Su
u=t = (s.a),=«a
u>t = (sa),=0

Theorem 4:Let ¢t € N and R € BTAR:,(E). The two
following assertions are equivalent:
1) s(R,p,t) is (Q,)-valid
2) 3R € B, (=) such thatk’ c R
Proof)))
“Lette NandR € BTAR;, (). The Theorem 3 shows that 1) s (E.p.1) is (Q,1)-valid and(t, p)-conservative,
there exists a uniqu&’ € By, (Z) such thatR’ c R, and the ~ 2) RS (t,p)-consistent.
Lemma 4 proves that botR and R’ generate the same sequenc@roperty (1) can generally be decided faiR, p, ¢) thanks to the
s. knowledge of the tasks running at time- 1. For Property (2), a
(1) = (2) | Suppose that the sequencgr, p,t) generated by solution consists in determining i is an acyclic relation. This

R is (Q,1)valid. Then the sequence generated Ryis also decision comes from Lemma S.
(Q,1)-valid, andR’ ¢ BtQp- Lemma 5:Let R € BT AR;, (E) anda C s(R,p,t);. The

(1) < (2) | Suppose now thak’ ¢ ngl Then's (R',p,t) is two following pr_operues are equivalent: _
(Q,D)valid. Consequentlys (R, p,) is also(Q, ¢)-valid. 1) The relation RU RP; (s (R,p,t).c) does not contain

QED cycles, ands (R, p,t) .« is (p,t + 1)-conservative
la| = min {p, |s (R,p,t)}|}
V(Ti,Tj) € a X (s (R,p,t)?\a) , (Tj,n) ZR

Moreover, the priority relation we deal with at each step imus
satisfy the two following properties:

This result proves thatBQp (2) is a basis of the subset of 2) {
BT AR, (E) composed of the sole relations compatible with @qof

(QAt)fvagd seql:encef . i 1o 2 total - Let s = s(R,p,t). One can remark thats.a)® = s¢ and
ed priority configuration corresponds to a total prigr -
Ixed priority configurat P Pwnt 1 e b () = UL RPy (s.a).

relation, so the Theorem 4 can be applied to fixed pnontyf/— o L
configurations. (1) = (2)| The definition of conservativity involve$x| =

min {p, s;"+1|}, hence the first condition agf2) is fulfilled.
On the one hand, we get (definitionbzP(s_a)?+1 () =
{(7s,75) |7 € a @ndr; € (s.a){,; \ a}. On the other hand(1)

1 ; ;
that we are in a valid state at time i.e. the fixed priority 25SUMeS that, =[Py (s.) does not contain cycles. So, if

- z
relation is able to schedule the software®dn ;). We know the (ri,75) € RP(8~a)?+1 (), then(;, 7i) & U, RPy (s.c). Hence

(t, p)-consistent relation? and then the sequenee R, p,t). The he second condition of2) is also satisfied. .
problem is now to decide: (2) = (1) | We assumes to be (¢, p)-conservative, and also

— g a i _ i
« if R remains consistent when extending the time interval 1§ = ™ {p; |si|}. Thens.a is (¢ + 1,p)-conservative. From
Ny: the second condition of2), the (7}, 7;)’s which correspond to a

. if it satisfies the constraints modeled tyon this interval. Couple(r;, ;) € Rp(s.oc)z+1 (@) do not belong taJ, _RPy (s).

We solve it thanks to a constructive process that follows Moreover, we assume},_ RP; (s) to contain no cycle. So no
recursive iteration on. Recall that we have at disposal a sequenag/cle can be found mut“ oRPy (s.).

F. Building the Minimal Basis
Figure 6 presents the fixed priority generation processp&ss

QED
The (¢ + 1, p)-consistency leads all possible task set® contain
the same number of tasksiin {p, |s¢|}. In general, there is no
unicity for a. In the following, we denote bysC= (R, p,t) the
set of possible values far.

All these results lead us to the following theorem, that gige
recursive method to build)-minimal basis.

Theorem 5:The sequence(BQ) satisfies the following

. 4P) teN
properties:
1) t=0= BZ,(2) = {0}
2 t>0=>
B, (®= U U RURP, 1, e ()
t+1,p ReBZ,(2) 5?&?%?53 s(R,p,t)¢
Proof

2 :Li,j(s, ri,j)

1 =Ll-’j(s, L+ 1)
1 =Li,j(s, riJ-+2)
1 =Li’j(s, ;;.J-+3)
1 =Li,j(s, ri’j+4)

0 =Li‘j(s, Lt 5)

t

Tij

ot
b

Nl

Fig. 7. Dynamic laxity of a task

The relation(is (0, p)-consistent and minimal. Then, we get

Bg, (2) = {0}.
Let t € N. We note

E= U 3 U RU RR@(R,p,t)a ((1)
REBL,(8) 35 Ry ‘
let R € BZ(5), a € SCz(Rpt) and R =

RURP(g 1) ().

By definition, we obtairs (R',p,t + 1) = (s (R, p, t) .a). From
the hypothesis of Theorem 5 and Lemma 5, we get

e RP(s(R,p,t).a) does not contain cycles,

e s(R,p,t).ais (p,t + 1)-conservative,

e s(R,p,t).ais (Q,t+ 1)-valid.

These properties yet stand fos (R',p,t+1). We get
RS (s(R,p,t).ac) = R’, and thenR’ is minimal. SoR’ ¢
B

1y (5)-
Let now be R € BSer (2), and denote byR’' the set
RP (s(R,p,t)). ThenR' ¢ Btc?p and s (R/,p7 t) = s(R,p,t).
By hypothesis, s (R,p,t+1) is (p,t+ 1)-conservative and
(Q,t+1)-valid. From Lemma 5, we obtais(R,p,t +1),,, €
SCz (R',p,t), and thereforeRP (s (R,p,t +1)) € E. SinceR
is minimal, we haveR = RP (s (R,p,t+ 1)), and it follows that
R e E.

QED

This theorem gives a constructive technique for the mininaais,
that is useful to generate all fixed priority configurationkiat
satisfy the constraing.

IV. COMPUTING THE PRIORITIES

In this section, we use Theorem 5 to produce all valid fixeﬁ&

priority configurations which are useful to schedule indefant
task systems. Firstly we specify the predicate functiap¥ qor-

responding to time constraints and secondly we give thepstigp
condition for the generation. Then, we give the algorithm.

A. Validity Constraints

For independent tasks, valitidy constraints are limitedinee P77ty

constraints: each task must reach its deadline. In our appro
this property is expressed in the following way:

V1 € E,V5 €N, Cyj (s,dij) = C;

This property can be computed by the use of laxities (seer&ig

7):
V1, € 2,V €N, L; ; (s,t) = (di’j — t) — (Ci — Ci’j (S,t))

One can show that each task reaches its deadlines if and only
if at any time, all tasks with null laxities are running. Ineth
following, we denote by, (s) this property.

B. StabilizingB},(Z)

The Theorem 5 gives a recursive constructive process to
build the V-minimal basis. The aim of this section is to obtain
the recursion stopping condition. In the following, we d&no
maz (r;) by r, and lcgl (T;) by P.

" The uniprocessc?r _sequences which are produced following
fixed priority configurations are cyclic with periog, and the
entrance into the cyclic behaviour is reached before the:dat”

[10]. So, in this context, the time interval to scan for cortimg

the valid fixed priority configurations is limited t®, » + 2P].

For synchronous system§k < [1|Z]],r, = 0), the multi-
processor sequences which are produced following fixedigyrio
configurations are cyclic with periogt, and the cyclic behaviour
starts at dat@® [11]. Therefore, in this context, the time interval
to scan for computing the valid fixed priority configuratioiss
limited to [0, P].

For these two contexts, the time interval to scan does not
depend on the used fixed priority configuration. Then thesbasi
B}(“, (2) collects all valid fixed priority configurations, respect-
ively with

1) M = r + 2P for uniprocessor,

2) M = P for synchronous task systems.

For asynchronous task systens({,j) € [1, |E|]2 such that
r;) which are scheduled on multiprocessor following a
ed priority configuration, [11] gives a feasibility intexl. Let

us consider the induction defined in the following way:

[}

If tasks are sorted by priorites (> j = priority (7;) >
(7j)), the multiprocessor sequence produced following
these priorities reaches its cyclic behaviour befsye,. How-
ever, sinceS|z; depends on the priority configuration we deal
with, computing a feasibility interval valid for all fixed jority
configurations leads to consider the maximum of|&ié different

rs

Sl =7

Lpossible values fob|z|. Therefore the complexity level is high.

The results presented in [11] propose a feasibility intertvat
they are also helpful for a cyclicity diagnosis onto seqesnc
Such results can be obtained observing the state of the task

system. Following the sequence the state of task; at time B_O .0... 0), (-1)
t is described by, | . — (s,1), and the state of the whole task —{07 - 0), (=1 = 1))}

system is the famlly of‘states of the individual tasks. Lenhow wh|Ie B+ 0 do
consider atime > r+ P. If the task system returns at timén the for all k such that t € 7, + TN then

state they were at time— P, then the sequence is cyclic from- forall (R,Z, M) € B do

P, and then the feasibility interval j8, t]. Scanning the condition I, =0

State (Task system,t) = State (Task system,t — P) while t if t € r + PN then

increases is useful to detect the timegwhen all sequences are for all (R,Z, M) € B do

cyclic: from this time, the basi®,’, » (2) is constant. if Z = M then

res.=resUR

C. Algorithm B =B\ {(R,Z, M)}

else M =7

The algorithm presented in Figure 8 is a recursive implement
ation for the computing o3}/, » (E). The data structure used is a
list of 3-tuples composed in the following way:

.

B =0
for all (R,Z, M) € B do
rec(t,R,I,M,B/,(O... 0),1)

I !

a priority relation, B.;‘ B)
o |T= (1), cx ti=t+

the va ueck’ t;rkJ (s (R,p,t),t) of the current job ofr;,, Fig. 9. Minimal base computing algorithm

k

° = (Mk)TkGE

the state of all tasks at the beginning of the current metabservation leads us to usiene jumpinginstead of computing
period. solutions for each possible switch time.

M gives the value off at timer + P |15°|. Note that the This validation process is also modular: we can study valid-
7,’s and t give a total information on the current state of théty for a subset of the task systems, the relatiBnobtained
system: laxitiesLaz;, (Z,t), active tasksAct (Z,t), and so on, concerns the sole tasks which belong to the concerned subset

can be deduced directly. In a second step, this relatio® can be integrated into a
validation study of the whole system by initializingg with
rec(t,R,I,M,B',a,k): {(R,(0... 0),(=1... —1))}.
S .= g Z‘:_‘ ag
if k >k|:El| then D. From the priority relation to the configuration
if s = min {p, |Act (Z,1)[} then The algorithm presented in Section IV-C builds fieminimal
valid = true basis, which collects all valid minimal relations. Here, ae
forall r, € = such that a; = 1, interested in valid configurations. This is why we must nowpma
forall 7; € Act(Z,t) such that a; =0 these priority relations into priority configurations. Riébns give
if (rj,7:) € R then information on task priorities. Computing a priority configtion
valid = false from a priority relation consists in choosing numeric value
if valid = true then compatible with the relation.
B"=B'U (R URPyR p e (a),] + G,M) If the priority relation R is total, one of the tasks (let us call
else it 7, and note that it is unique) is thR-greatest element Gf:
if s <pA7p € Act(Z,t) then 7's priority is the higher priority: we sePriority (1) := |Z|. We
rec(t,R,I,M,B' (a1... ag_1,1,a541... an),k+1) consider now the restriction iy of R to 2\ {r}. 7 is
if Laxy, (Z,t) > 0 then also total: the task’ of maximal priority can be designed, and
rec(t, R, 1,M, B’ (a1 ... aj_1,0,ak41--- an) .k +1) ts priority set to|S| — 1. This process is iterated until the set
Fig. 8. BY,(Z) computing algorithm contains only one task, that is associated with priotityThis

method provides a priority configuration according to thienty

We can now present the minimal basis computing algorithfglation with at most (|=|*) operations.
(see Figure 9). Each step consists firstly in initializinge th If the priority relation R is partial, then there are two tasks
7,’'s associated with tasks which are awaking, and secondly @id 7; such that(r;,7;) ¢ R and (;,7;) ¢ R. This situation
searching for the start time of the cycling behaviour. Theida Means that the relatioR correspond to more than one priority
is built by Ca”ing the a|gorithm presented in Figure 8. Whka configuration. When this context y|6|ds we build two intediate
execution is completedes contains the minimal basis. relationsRy = RU {(7;,7;) } andRy = RU {(7;, ;) }, and we
This computation stands on two basic operations on prioriffoceed recursively. This procedure gives a set of totalioels.
relations:searchingandaddinga couple(r;, 7;) in R (for adding
the properties of the algorithm ensure that the relationaiem V. EXPERIMENTATION RESULTS
cycle-free). A powerful data structure must be developed to
represen{ R, Z, M). A
Some optimizations can be done. For instance, there is nd.et us consider the following system of tasks, that we study
evolution of R while the running tasks remain unchanged: thien a2-processor architecture.

An example of validation

7 100
\O N\
TL | T2 | T3 | T4 | T5 | T6 | T7 = 80 :
T x | x | x < | x § 60 \\ \\
] X g 40 \\
T3 é
Ti | T4 x | x x | x E 20 N
T5 X | x | x X | x 0 T T \ ‘
T6 X | X X 60 70 80 90 100
T7 X X o
Legend A box is marked withx if (;,7;) belongs to the CPU Load (%)
relation. — PFX --—-RM DM
Fig. 10. Priority relation for the example. --—EDF T LLF ——RM-US
processor
< 100
g 80
Task T C; D; T; g 60
1 15 7 11 | 38 g 40
Ty 47 1 8 38 gg 20
3 | 4| 4] 43|45 £ 0
T4 17 8 13 | 19 \@ \(OQ \%Q %QQ
Ts 43 | 3 3 6
T6 | 22| 8 | 11 | 19 CPU Load (%)
m |30] 625]2 —PFX -—RM DM
The classical fixed priority scheduling policieBX/ and D M) --—EDF ——LLF —RM-US
do not schedule this task system. One can note that alsdcelbss 100 2 processors

dynamic priority scheduling policiesElDF and LLF) do not
schedule them. Let us now use the here-presented méthod.
The minimal basis is produced thanks to the algorithm prtesen
in Section IV-C. The computing is completed fat 17147 and
produces a single priority relation (denot&dbelow). The graph

Performance (%o)
N
S

of this priority relation is presented in Figure 10. 20
Since the basis is not empty, this task system can be scliedule 0
by a fixed priority based scheduler. We use the method destrib 250 260 270 280 290 300
in Section IV-D to determine the fixed priority configuratson CPU Load (%)
corresponding to this relation. One can remark that thiatics
is not total, sincer; andrs can not be separated. Therefore, the —PFX --—RM DM
partial relation can be used to produce two total relatioh&ckv --—-EDF —LLF —RM-US
correspond to two different sets of solutions. In our exanpl 3 processors
these two relations are: . 100
< 80
R1:RU{(T1,T5)} % 60
RQ—RU{(T5,71)} é 40
The relationsR; and R, are total, so we can now compute ‘% 20
some corresponding priority configurations: A~ 0

350 360 370 380 390 400

Task | Ry | Ra
el 7 6 CPU Load (%)
2 i i —PFX -~ RM DM
-
ST --—EDF ——LLF ——RM-US
T4 = 4 processors
5
6 4 4 Fig. 11. Performances of each scheduling method
7 3 3

This example shows that our method produces solutions whigh Average performances
are out of reach of all classical methods, includibgF'. These)))
solutions are obtained quickly, since the computing timethigs N this section we compare our methad~X' with the usual
task system is less thaml second on ar2.5GHz Apple-G5 Scheduling policiesRM, DM, EDF, LLF) and with the fixed
machine. priority scheduling method RM-U@L} proposed in [2]. We

m—2

have generated samples composetloof task sets. Each sample Figure 12 presents thBF X solution average computing times
is characterized by a CPU-load and a target: all task systefos a task system. We deal with a85GHz Apple-G5 machine.
which belong to a specific sample are designed for the sa®@ee can remark that computing times vary as the inverse of
number of processors and share the same CPU-load. Tagly/stem loads. This is a consequence of using of minimal bases
parameters are integer numbers attributed by using thewfmly for representing sets of solutions at timethe complexity is
rule: proportional to the number of valid sequences of lengitistead
1) the periodsT}) are random numbers i, 100], of the number of fixed p_riority configurgtions. Hence, the enor
2) the WCET (;) are random numbers ift, 40], the s_ystemg are c_o_nstralned, the_ less is the nu_mbe_r ofgmiutl
to build. This (intuitive) property is very interesting, dertainly
makesPF X a good solution for real case studies. Moreover, one
can see our implementation ¢fF'X as a breadth-first search.

To obtain the required CPU-load for a task system, we addtasfy get quickly a solution, one can implement it as a depth-firs
until the targeted value is reached. Consequently, the rumb gegrch.

tasks in a system is not fixed, but its average numben.is
A scheduling simulation is performed for each generatel tas
system, following all experimented scheduling technigq&swe
associate each coupleample, scheduling technique) with the We have presented a new methallF'X, for determining
number of task systems in the sample which can be schedufegd priority configurations to schedule real-time systeoms
following the technique. We call this numbecheduling power multiprocessor. Experimentations have shown that in thigext:
of the technique for the sample. Figure 11 presents thetsestil 1) RAs and DM are powerless, since more thae% of the
these experimentations. fixed priority feasible task systems can not be scheduled
We are interested ilPFX performances, because it is the using these policies,
fixed priority relation generatiotechnique presented in this work. 2) PFX outperformsRM, DM, and alsoEDF,
PFX results correspond to the maximal scheduling power we3) PFX reaches solutions which can not be obtained with
can expect from the fixed priority schedulers existing inl-rea classical scheduling methods,
time kernels. One can remark that some generated task s/stem}) PFX can findall valid fixed priority configurations.
can not be scheduled in this waltDF and LLF are optimal Thege results show thatFX is very useful and efficient for
on uniprocessor, therefore their performances are refesefor multiprocessor scheduling of real-time systems. Our imglet-
our tests. For synchronous task systei3/ is also optimal on 4iion of pPFX can be improved in different ways: optimizing
uniprocessor and consequentiyi” X' does not bring a signific- yata structure, depth-first search instead of breadthdeatch,
ative improvementD/ seems to be a very good fixed priorityjncremental search, etc. In a near future we plan to extead th
scheduling policy for the uniprocessor context. scope of this technique with resource sharing protocolsiddéng
On the contrary, no on-line policy is optimal in multiproses hybrid scheduling algorithms involving X and other classical

[12]. The evaluations presented in Figure 11 show that" scheduling techniques is also a challenging research tejich
outperforms all other methods. However, the schedulesrgt®te s in progress by the authors.

by LLF are characterized by large numbers of preemptions and
switches. For some systems, this is not an issue; for othesmsy
high preemption level makes the resulting overhead unaabkyp
In our performance evaluation computindd, F' must be view as [1] B. Andersson, and J. Jonsson. Some insights on fixediripree-

an aid to minimize the number of task systems whose fedgibili ~ mptive non partitioned multiprocessor scheduling. Realel Systems
has to be tested Symposium — Work-In-Progress Session, pp. 53-56, 2000.

. L . [2] B. Andersson, S. Baruah, and J. Jonsson. Static-prisaheduling on
Of course,PF X outperforms all fixed priority policies: we can multiprocessors. Real-Time Systems Symposium, pp. 193-2001.

observe thatRM and DM policies do not reach the scheduling [3] N.C. Audsley, K. Tindell, and A. Burns. The end of the lifer static
power of the fixed priority scheduling. We can also observe Cyclic scheduling? Euromicro Workshop on Real-time Systepp. 36—

3) the deadlinesif,) are random numbers Ty, T%],
4) the release timesf) are random numbersifd, 7%].

VI. CONCLUDING REMARKS

REFERENCES

L e X 41, 1993.
(and it is surprising) thaP’F'X also outperformsEDF in the 4 N C. Audsley, A. Bums, R.l. David, K.W. Tindell, and A.Welling.
multiprocessor context. Last but not leagtZ’X can find all Fixed priority preemptive scheduling: an historical pertve. Real-
valid fixed priority configurations. This technique seemsb® Time Systems, 8(2-3):173-198, 1995.

[5] T.P. Baker. An Analysis of Fixed-Priority Schedulabjlion a Multipro-
cessor. Real-Time Systems, 32(1-2):49-71, 2006.

[6] S.K.Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvelopbrtionate

1.5 Progress: A notion of Fairness in Resource Allocation. Atbmica,

’ 15:600-625, 1996.

\ [7] S.K. Baruah, and J. Goossens. The static-priority saliregl of periodic

very promissing.

—_

task systems upon identical multiprocessor platforms. erivational
Conference on Parallel and Distributed Computing and 8ystepp.

A \\ 427-432, 2003.
J\ L \ [8] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Asoler and S.

Baruah. A Categorization of Real-Time Multiprocessor Sithiag
Problems and Algorithms. In Handbook of Scheduling: Algoris,
Models, and Performance Analysis, Computer and Informafoience
Series, pp. 30-60, Chapman Hall/ CRC Press, 2004.

0

CPU Load (%) [9] A. Choquet-Geniet. Un premier pas vers I'étude de lalicge en

.)) o environnement multi-processeur. Proceedings of ReakTBgstems,
Fig. 12. PFX configurations computing time pp. 289-302, Paris, 2005.

Computing time (s)
o
w»

o

o o O O
o O F o~
— -

290
350
380

[10] A. Choguet-Geniet and E. Grolleau. Minimal scheduigbinterval for

[11]

(12]

(23]

[14]

(18]

[16]

real-time systems of periodic tasks with offsets. TheoattComputer
Science, 310:117-134, 2004.

L. Cucu and J. Goossens. Feasibility Intervals for Eiieiority Real-
Time Scheduling on Uniform Multiprocessors. InternatioBanference
on Emerging Technologies and Factory Automation (ETFA'O&).
397-405, 2006.

M.L. Dertouzos and A.K. Mok. Multiprocessor on-line heduling
of hard-real-time tasks. |IEEE Transactions on Softwareirtg®ging,
15(12):1497-1506, 1989.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic decitiag
algorithm : Exact characterisation and average case hmlraviReal-
Time Systems Symposium, pp. 166-171, 1989.

J.Y.-T. Leung and J. Whitehead. On the complexity of dixgrior-
ity scheduling of periodic real-time tasks Performance l&aton,
2(4):237250, 1982.

C.L. Liu and J.W. Layland. Scheduling algorithms for Itiprogram-
ming in a hard real-time environment. Journal of the ACM,120(6—-61,
1973.

L. Sha, T.F. Abdelzaher, K.-EArzén, A. Cervin, T.P. Baker, A. Burns,
G.C. Buttazzo, M. Caccamo, J.P. Lehoczky, and A.K. Mok. Rieat
scheduling theory: A historical perspective. Real-Timest8gns, 28(2-
3):101-155, 2004.

Bernard Chauviere received his MS degree
in computer science from University of Poitiers
(France) in 2004. He is currently finishing his
Doctoral degree at théaboratoire d’Informatique
Scientifique et IndustriellgPoitiers, France). His
research interest is focused on real-time scheduling
in multiprocessor.

Dominique Geniet received hisM S degree and
its PhD from University of ParisXI (France)
respectively in1986 and in 1989. He is Associate
Professor at the University of Poitiers (France). His
research interest is focused on real-time scheduling
in multiprocessor.

René Schotthas been a full Professeur at the Uni-
versity Henri Poincaré, Nancy (France), since 1987.
His research interests include the study of stochastic

tures and their applications in computer science
(probabilistic analysis of algorithms, optimization
problems, real-time systems).

processes and operator calculus on algebraic struc-

